自动驾驶技术:动态避障与路径规划控制系列视频教程——MATLAB Simulink仿真实验及代码实现,自动驾驶路径规划 采用动态规划实现动态避障功能 MATLAB SIMULINK仿真实验视频效果 代码,相应软件安装好即可直接运行 从汽车运动学到动力学模型搭建,设计控制算法,到决策规划算法,一整套自动驾驶规划控制系列目前已在Matlab2018b、carsim2019.1 和prescan8.5.0联合软件上跑通 提供代码 ,核心关键词:自动驾驶; 路径规划; 动态规划; 避障功能; MATLAB SIMULINK仿真实验; 运动学模型; 动力学模型; 控制算法; 决策规划算法; Matlab2018b; carsim2019.1; prescan8.5.0。,"基于动态规划的自动驾驶路径规划与避障系统设计与仿真"
2025-05-04 17:33:30 126KB 柔性数组
1
内容概要:本文详细介绍了如何利用动态规划(Dynamic Programming, DP)在MATLAB/SIMULINK环境中实现自动驾驶车辆的动态避障功能。首先,文章解释了动态规划的核心思想及其在路径规划中的应用,特别是通过状态转移方程来解决避障问题。接着,讨论了运动学模型(如自行车模型)的建立方法,以及如何通过PID和MPC控制算法进行路径跟踪和避障。此外,文章还探讨了联合仿真平台(MATLAB + Carsim + Prescan)的搭建和配置,展示了如何将理论转化为实际的仿真效果。最后,提供了完整的代码实现和调试技巧,帮助读者快速上手并优化性能。 适合人群:对自动驾驶技术和路径规划感兴趣的科研人员、工程师和技术爱好者。 使用场景及目标:适用于研究和开发自动驾驶系统,特别是在复杂环境下实现高效的动态避障功能。目标是提高车辆的安全性和智能化水平,减少人为干预。 其他说明:文中提供的代码已在GitHub上开源,读者可以直接下载并运行。需要注意的是,某些高级功能(如深度强化学习)将在后续版本中继续探索。
2025-05-04 07:13:33 315KB
1
《YOLOv5疲劳驾驶数据集详解》 在智能交通系统和自动驾驶领域,疲劳驾驶检测是一项重要的技术,它能够及时预警驾驶员的疲劳状态,降低交通事故的风险。本文将深入解析一个基于YOLOv5的疲劳驾驶数据集,该数据集包含了丰富的图像信息,旨在帮助开发者训练出准确的疲劳驾驶检测模型。 我们要理解的是YOLOv5,这是一种实时目标检测的深度学习框架,全称为"Yolo You Only Look Once",以其快速、精确和易于使用的特点在计算机视觉领域广泛应用。YOLOv5采用了改进的网络结构,提高了目标检测的速度和精度,尤其适合处理像疲劳驾驶检测这类实时性要求高的任务。 本数据集的核心在于其提供的图像和对应的标签信息。数据集被划分为两个部分,训练集(train)和验证集(val),比例为8:2,总共包含2914张图片。这样的划分方式遵循了深度学习模型训练的常规做法,训练集用于训练模型,验证集则用于在训练过程中评估模型性能,防止过拟合。 数据集中的类别包括四种:closed_eye、closed_mouth、open_eye和open_mouth。这些类别代表了驾驶员面部的不同状态,反映出其可能的疲劳程度。例如,“closed_eye”表示驾驶员眼睛闭合,可能是打哈欠或者睡眠状态;“closed_mouth”可能是疲倦时下意识的口部动作;而“open_eye”和“open_mouth”则可能是正常清醒的状态。通过识别这些特征,模型可以判断驾驶员的疲劳状况。 标签信息是以txt格式提供的,这种格式简洁且易于处理。每个txt文件对应一张图片,其中包含了图片中所有目标对象的坐标和类别信息。例如,一条记录可能形如:“class_id x_min y_min x_max y_max”,这表示了目标物体在图像中的位置以及属于哪个类别。开发者可以利用这些信息来训练YOLOv5模型,使其学习如何准确地定位并识别疲劳驾驶的各种迹象。 在训练过程中,可以使用YOLOv5框架提供的工具进行数据预处理,如图像增强,以增加模型的泛化能力。同时,利用损失函数和优化算法(如Adam)调整模型参数,以最小化预测框与真实边界框之间的差距。在训练完成后,通过验证集评估模型性能,如果达到预期效果,可以进一步在测试集上进行测试,以确保模型在实际应用中的有效性。 这个疲劳驾驶数据集是训练YOLOv5模型进行疲劳驾驶检测的理想资源。通过对不同面部状态的精确识别,我们可以构建出能够实时监测驾驶员疲劳状态的系统,从而提升道路安全。开发者应充分利用这个数据集,结合YOLOv5的强大功能,开发出高效、可靠的疲劳驾驶检测解决方案。
2025-04-29 17:52:05 254.96MB 数据集
1
内容概要:本文详细介绍了自动紧急制动(AEB)系统中距离模型的研究及其在Simulink中的实现。该模型充分考虑了前车的不同运动状态(如匀速、加速、减速)、驾驶员反应时间和制动器响应时间等因素,构建了预警与制动策略。具体来说,模型分为一级预警、二级预警、部分制动和紧急制动四个层次,并通过Matlab代码展示了具体的判断逻辑。此外,文章还讨论了基于C-NCAP管理规则的三个测试场景(CCRs、CCRm、CCRb)的仿真,通过调整参数设置,观察AEB系统在不同情况下的预警和制动表现,从而优化模型并提高系统性能。 适合人群:从事自动驾驶技术研发的专业人士,尤其是关注AEB系统设计与优化的工程师。 使用场景及目标:适用于自动驾驶汽车的研发过程中,用于评估和改进AEB系统的性能,确保其在各种复杂路况下的可靠性与安全性。 其他说明:文中提供了大量详细的代码片段和技术细节,有助于读者深入了解AEB系统的内部机制。同时,强调了模型的实际应用价值,特别是在应对突发交通状况时的表现。
2025-04-29 17:45:29 155KB
1
实时驾驶行为识别与驾驶安全检测-实现了开车打电话-开车打哈欠的实时识别 实现开车打电话和开车打哈欠的实时识别,对于提升驾驶安全具有重要意义。下面将简要介绍如何构建这样一个系统,并概述代码运行的主要步骤。请注意,这里不会包含具体代码,而是提供一个高层次的指南,以帮助理解整个过程。 #### 1. 环境搭建 - **选择操作系统**:推荐使用Linux或Windows,确保有足够的计算资源(CPU/GPU)来支持深度学习模型的运行。 - **安装依赖库**:包括Python环境、PyTorch或TensorFlow等深度学习框架、OpenCV用于图像处理、dlib或其他面部特征检测库等。 - **获取YOLO模型**:下载预训练的YOLO模型,或者根据自己的数据集进行微调,特别是针对特定行为如打电话、打哈欠的行为特征。 #### 2. 数据准备 - **收集数据**:收集或创建一个包含驾驶员正常驾驶、打电话和打哈欠等行为的数据集。每个类别应该有足够的样本量以确保模型的学习效果。 - **标注数据**:对数据进行标注,明确指出哪些帧属于哪种行为。可以使用像LabelImg这样的工具
2025-04-27 08:38:09 84.83MB 驾驶行为 打电话检测
1
内容概要:本文详细介绍了在Carsim和Simulink联合仿真环境中,利用线性二次型调节器(LQR)算法进行自动驾驶车辆横向控制的方法和技术细节。首先,通过MATLAB函数实现了LQR的设计,重点讨论了状态方程和二次型代价函数的应用,特别是针对不同车速条件下的时变处理。接着,文章深入探讨了状态变量的选择、权重矩阵Q和R的配置以及速率限制器的设置,强调了这些因素对控制系统性能的影响。此外,还提到了一些调试技巧和常见问题的解决方案,如数值稳定性和模型线性化。最后,通过多个实际案例展示了LQR算法的有效性和优越性,特别是在高速变道和紧急情况下的表现。 适合人群:从事自动驾驶研究的技术人员、汽车工程领域的研究人员、对控制理论感兴趣的高级工程师。 使用场景及目标:适用于希望深入了解自动驾驶横向控制原理的研究人员和技术开发者,旨在帮助他们掌握LQR算法的具体实现方法,提高车辆路径跟踪的精确度和平顺性。 其他说明:文中提供了大量MATLAB代码片段和调试建议,有助于读者更好地理解和应用所介绍的技术。同时,文章还分享了一些实战经验和教训,为相关项目的实施提供宝贵的参考。
2025-04-25 11:18:42 738KB LQR算法
1
自动驾驶控制技术:基于PID&LQR控制路径跟踪的Simulink与Carsim联合仿真研究报告,自动驾驶控制:基于PID&LQR控制路径跟踪的Simulink与Carsim联合仿真研究报告,自动驾驶控制-PID&LQR控制路径跟踪仿真 Simulink和Carsim联合仿真,横向控制为前馈+反馈lqr,纵向为位置-速度双PID控制 对于减小误差,可以联合后轮转向 四轮转向算法(小店中有) 下图为Simulink模型截图,跟踪效果,误差等 提供模型文件,包含, ,核心关键词: 1. 自动驾驶控制 2. PID控制 3. LQR控制 4. 路径跟踪仿真 5. Simulink联合仿真 6. Carsim联合仿真 7. 前馈+反馈LQR横向控制 8. 位置-速度双PID控制 9. 减小误差 10. 四轮转向算法 以上关键词用分号分隔为:自动驾驶控制; PID控制; LQR控制; 路径跟踪仿真; Simulink联合仿真; Carsim联合仿真; 前馈+反馈LQR横向控制; 位置-速度双PID控制; 减小误差; 四轮转向算法。,自动驾控仿真的PID&LQR联合控制路径跟踪研究
2025-04-25 11:10:55 1.27MB
1
python基于卷积神经网络的疲劳驾驶检测,95分毕设,python基于卷积神经网络的疲劳驾驶检测,95分毕设,python基于卷积神经网络的疲劳驾驶检测,95分毕设,python基于卷积神经网络的疲劳驾驶检测,95分毕设,python基于卷积神经网络的疲劳驾驶检测,95分毕设,python基于卷积神经网络的疲劳驾驶检测,95分毕设,python基于卷积神经网络的疲劳驾驶检测,95分毕设,python基于卷积神经网络的疲劳驾驶检测,95分毕设,python基于卷积神经网络的疲劳驾驶检测,95分毕设,python基于卷积神经网络的疲劳驾驶检测,95分毕设,python基于卷积神经网络的疲劳驾驶检测,95分毕设,python基于卷积神经网络的疲劳驾驶检测,95分毕设,python基于卷积神经网络的疲劳驾驶检测,95分毕设,python基于卷积神经网络的疲劳驾驶检测,95分毕设,python基于卷积神经网络的疲劳驾驶检测,95分毕设,python基于卷积神经网络的疲劳驾驶检测,95分毕设,python基于卷积神经网络的疲劳驾驶检测,95分毕设,python基于卷积神经网络的疲劳驾驶检测,95
1
疲劳驾驶检测和识别1: 疲劳驾驶检测和识别数据集(含下载链接)https://blog.csdn.net/guyuealian/article/details/131718648 疲劳驾驶检测和识别2:Pytorch实现疲劳驾驶检测和识别(含疲劳驾驶数据集和训练代码)https://blog.csdn.net/guyuealian/article/details/131834946 疲劳驾驶检测和识别3:Android实现疲劳驾驶检测和识别(含源码,可实时检测)https://blog.csdn.net/guyuealian/article/details/131834970 疲劳驾驶检测和识别4:C++实现疲劳驾驶检测和识别(含源码,可实时检测)https://panjinquan.blog.csdn.net/article/details/131834980
2025-04-19 22:37:48 24.74MB android 疲劳驾驶 疲劳驾驶检测
1
(1) 首先, 明确本课题的研究背景和意义, 对高速列车自动驾驶系统的原理、结构、功能做了深入的分析,将高速列车自动驾驶运行过程分为最优目标速度曲线的优化和对最优目标速度曲线的跟踪。为了对列车自动驾驶的运行效果进行评价,建立以精准停车、准时性、舒适性、能耗等多目标优化指标;对高速列车的运行控制策略进行深入分析,提出改进的混合操控策略来指导行车过程。 (2) 其次, 对高速列车运行过程进行建模和受力分析, 分别建立列车单质点模型和多质点模型, 分析两种模型的受力情况;同时, 对高速列车的工况转换和运行状态进行探讨分析;提出一种基于融合遗传算子的改进粒子群算法的速度曲线优化方法, 获得满足多目标优化的最优目标速度曲线。 (3)最后, 设计高速列车速度控制器, 分析了PID控制器的优缺点,针对其存在的缺陷, 采用自抗扰控制技术, 从而克服PID速度控制器存在的控制效果差、跟踪误差大等问题;对于自抗扰控制器参数调节繁琐问题, 利用融合遗传算子的改进的粒子群算法对其进行参数整定;通过SIMULINK仿真平台, 搭建列车自抗扰速度控制器的仿真模型,控制列车对最优目标速度曲线的的跟踪运行。 ### 高速列车自动驾驶多目标优化的控制策略研究 #### 一、研究背景与意义 随着我国高速铁路网络的快速发展,提升铁路运输效率和服务质量已成为关键议题。高速列车作为铁路运输的重要组成部分,不仅承担着大量的货物运输任务,还服务于广泛的乘客群体。在这一背景下,开展高速列车运行多目标优化的研究具有重大的社会意义和经济价值。 #### 二、研究内容与方法 ##### (一) 高速列车自动驾驶系统概述 高速列车自动驾驶系统是确保列车高效、安全运行的核心技术之一。该系统主要包括以下几个方面: 1. **最优目标速度曲线的优化**:即确定列车在整个行驶过程中的最佳速度分布,旨在减少能耗并提高准时性和乘客舒适度。 2. **最优目标速度曲线的跟踪**:通过精确控制列车的实际速度,确保其能够按照预先设定的最佳速度曲线运行。 为了全面评估自动驾驶系统的性能,本研究建立了以精准停车、准时性、舒适性、能耗等为目标的多目标优化指标体系。 ##### (二) 高速列车运行建模与分析 1. **建模**:分别构建了列车单质点模型和多质点模型,并对两种模型的受力情况进行详细分析。这些模型有助于更准确地理解列车在不同运行状态下的力学特性。 2. **工况转换与运行状态分析**:深入探讨了高速列车在不同工况(如加速、减速、匀速)之间的转换规律及其对列车运行状态的影响。 3. **速度曲线优化**:提出了一种基于融合遗传算子的改进粒子群算法的速度曲线优化方法,旨在获得满足多目标优化条件的最优目标速度曲线。 ##### (三) 速度控制器设计与仿真 1. **PID控制器的局限性**:传统的PID控制器虽然广泛应用于工业控制领域,但在处理具有滞后性或惯性的对象时,其控制效果往往不尽如人意,容易出现跟踪误差大等问题。 2. **自抗扰控制器的应用**:为解决上述问题,本研究采用了自抗扰控制技术设计高速列车的速度控制器。该技术能够有效克服传统PID控制器存在的局限性,显著提高速度控制的精度。 3. **参数整定**:利用融合遗传算子的改进粒子群算法对自抗扰控制器的关键参数进行整定,以期达到最佳的控制效果。 4. **SIMULINK仿真**:在MATLAB/SIMULINK平台上搭建了高速列车自抗扰速度控制器的仿真模型,通过模拟实际运行环境,验证所提出的控制策略的有效性。 #### 三、结论 通过对高速列车自动驾驶系统的深入研究,本项目成功实现了以下几点: 1. **优化的目标速度曲线**:通过建立多目标优化模型,获得了既符合准时性要求又能确保乘客舒适度和能源效率的最优目标速度曲线。 2. **自抗扰速度控制器**:设计了一种基于自抗扰控制技术的速度控制器,并通过改进的粒子群算法对其参数进行了优化,显著提高了速度控制的精度和稳定性。 3. **仿真验证**:利用MATLAB/SIMULINK平台搭建的仿真模型,证明了所提出的控制策略在实际应用中的可行性和有效性。 本研究不仅为高速列车自动驾驶技术的发展提供了有力支持,也为未来铁路运输系统的智能化升级奠定了坚实的基础。
1