针对基于传统BP神经网络的齿轮箱故障诊断方法存在的收敛速度慢、精度不高等问题,提出了一种基于Elman神经网络的齿轮箱故障诊断模型。该模型以齿轮箱特征向量为输入、故障类型为输出,通过改进遗传算法对Elman神经网络的权值和阈值进行优化,将优化后的Elman神经网络用于齿轮箱故障诊断。仿真结果表明,该故障诊断模型加快了网络训练速度,提高了齿轮箱故障诊断的准确度和精度。
2021-04-12 22:29:39 247KB 行业研究
1
采用小波阈值法对齿轮箱故障信号进行去噪预处理,将经验模式分解(EMD)和快速傅立叶变换(FFT)相结合对齿轮箱故障信号进行特征提取,这种方法适用于非线性非平稳信号的自适应状态分析。利用EMD方法将去噪后的信号就行经验模态分解,得到一定数量的固有模态函数(IMF)分量,选取具有特定意义的IMF进行FFT,就可以得到相应的功率谱,从而提取齿轮箱故障特征频率。
1