网络安全态势感知模型研究与系统实现在IT领域是一个重要的研究课题,它涉及多个学科领域,如信息安全、数据挖掘、网络攻防技术和人工智能等。该研究领域旨在对网络安全状态进行实时监控、分析和预测,从而帮助网络安全管理者更好地理解和应对复杂的网络环境中的各种安全威胁。 网络安全态势感知模型是一种能够实时检测、理解和预测网络安全状态的技术和方法。它需要从海量的网络安全事件中提取出有价值的信息,并通过分析这些信息来对网络的安全状态进行评估。态势感知模型通常包括数据收集、数据处理、态势理解和态势预测四个主要部分。 数据收集是网络安全态势感知的第一步,涉及对网络环境中的各种原始数据进行采集,包括但不限于系统日志、网络流量数据、安全报警信息等。这些数据是进行态势评估和预测的基础材料。 数据处理是指对收集到的原始数据进行清洗、整理和格式化,以便于后续分析。在这一阶段,往往需要过滤掉无关信息和噪声数据,将数据转化为有用的信息。 再次,态势理解是基于数据处理的结果,通过数据挖掘技术对网络安全事件进行分析和识别,将复杂的数据转化为网络安全管理者能够理解的形式。在这一阶段,需要综合考虑网络的脆弱性、威胁和资产价值等要素,以更准确地评估当前的网络安全状况。 态势预测则是根据态势理解的结果,利用各种预测模型或算法对未来网络的安全状况进行预测,帮助管理者提前做好安全防范和应对措施。通常,态势预测会涉及到机器学习和人工智能算法,用于建立预测模型,这些模型能够不断学习和适应新的数据,以提高预测的准确性。 本文提到的“张勇”在完成的博士论文中,提出了一个网络安全态势感知模型,并实现了相应的系统。该论文的研究成果不仅包括对现有网络安全技术的发展和存在的安全问题的综述,而且具体阐述了网络安全态势预测技术的实现过程。论文的指导教师是“奚宏生”,表明这项研究是在专家的指导下完成的,具有一定的学术价值和实用性。 在中国科学技术大学攻读信息安全专业的博士学位过程中,张勇深入研究了网络安全态势感知模型,并且他的研究成果被发表为博士学位论文,意味着该研究成果得到了学术界的认可。论文的研究成果不仅对学术界有贡献,而且对实际的网络安全工作有指导意义,可能涉及实际部署的系统实现,这将有助于提升网络安全的监控和管理能力。 此外,论文的完成日期是“2010年5月1日”,这为研究者提供了一个具体的时间点,可以借以了解该研究成果是在网络安全技术发展的哪一个阶段提出的,也便于评估其与当前技术发展的关联和差异。 网络安全态势感知模型研究与系统实现是一篇涵盖了信息安全基础理论、实际技术应用和未来发展趋势的高水平博士学术论文。通过该论文,我们可以了解到网络安全态势感知的核心理论、关键技术以及实现策略,进而更有效地管理网络安全风险,保障网络环境的安全稳定。
2026-01-27 08:06:28 6.92MB
1
基于无迹卡尔曼滤波(UKF)与模型预测控制(MPC)的多无人机避撞研究(Matlab代码实现)内容概要:本文围绕基于无迹卡尔曼滤波(UKF)与模型预测控制(MPC)的多无人机避撞技术展开研究,结合Matlab代码实现,重点探讨了在复杂动态环境中多无人机系统的状态估计与碰撞规避控制策略。文中利用UKF对无人机系统状态进行高精度非线性估计,提升感知准确性,并结合MPC实现未来轨迹的滚动优化与实时反馈控制,有效应对多机交互中的避障需求。研究涵盖了算法建模、仿真验证及关键技术模块的设计,展示了UKF与MPC在多无人机协同飞行中的融合优势。; 适合人群:具备一定控制理论基础和Matlab编程能力,从事无人机控制、智能交通、自动化或相关领域研究的研究生、科研人员及工程技术人员。; 使用场景及目标:①应用于多无人机协同任务中的实时避撞系统设计;②为非线性状态估计(如UKF)与最优预测控制(如MPC)的结合提供实践范例;③服务于高校科研项目、毕业设计或工业级无人机控制系统开发。; 阅读建议:建议读者结合提供的Matlab代码进行仿真实践,深入理解UKF的状态估计机制与MPC的优化控制过程,注意参数调优与仿真环境设置,以获得更真实的避撞效果验证。
1
深度学习DNN正向预测神经网络与逆向设计神经网络模型 超表面参数设计 反射谱预测fdtd仿真 复现lunwen:2018 Advanced Material:A Bidirectional Deep Neural Network for Accurate Silicon Color Design lunwen介绍:利用深度学习DNN神经网络模型,实现反射谱预测与结构参数逆向设计功能 结构色体现为结构的反射谱线,构建两个DNN模型,一个用于输入结构参数,输出对应的结构色谱线参数,不需要FDTD仿真即可得到预测谱线 第二个DNN模型用于逆向设计,输入所结构色谱线参数,网络可以输出对应的结构尺寸参数,根据目标来设计结构 案例内容:主要包括四原子结构的反射谱仿真计算,以及构建结构参数与反射谱线的庞大的数据库 包括两个深度学习模型,一个是正向预测DNN模型,包括网络框架的构建,pytorch架构,网络的训练以及测试;还有一个逆向设计的DNN模型,同样包括网络的训练和预测 以及做了一个例子的对照和使用 可以随机更改参数来任意设计超表面原子的参数 案例包括fdtd模型、fdtd设计脚本、pytho
2026-01-26 18:08:22 5.24MB ajax
1
基于CTRV轨迹预测模型的周向防碰撞系统:Carsim2019+simulink辅助驾驶安全预警研究,基于轨迹预测的周向防碰撞(Carsim2019+simulink) 辅助驾驶 安全预警 CTRV轨迹预测模型 车载激光雷达 各种危险碰撞场景下进行提前预测,并进行安全制动,实现防避障功能。 模型代码清楚简洁,方便更改使用可在此基础上进行算法的优化。 ,基于轨迹预测的防碰撞; 辅助驾驶安全预警; CTRV轨迹预测模型; 车载激光雷达; 危险场景预测; 安全制动; 防避障功能; 模型代码优化。,基于CTRV轨迹预测模型的周向防碰撞系统:激光雷达辅助安全预警与避障优化
2026-01-26 14:41:36 772KB istio
1
在深入探讨HanLP Portable 1.8.6版本与对应模型下载及data-for-1.7.5相关的内容之前,需要明确HanLP是什么。HanLP是一个高效的自然语言处理工具包,由一系列算法和模型组成,专门用于处理中文语言。其功能丰富,从分词、词性标注、命名实体识别到依存句法分析等,都被广泛地应用于学术研究和工业生产中。 HanLP Portable 1.8.6版本是在其发展史上的一次重要更新,它引入了更多优化和改进,提高了处理中文文本的效率和准确性。此版本的HanLP需要与特定的模型数据配合使用,这些模型数据包含了大量经过精心挑选和加工的语料,是进行自然语言处理任务的基石。 在处理中文文本时,模型数据的版本必须与HanLP Portable版本匹配。在此处提及的data-for-1.7.5模型数据,就是专为HanLP Portable 1.7.5版本设计的。尽管HanLP Portable 1.8.6版本已经推出,但在某些情况下,研究人员或开发者可能仍需要使用旧版本的模型数据,因此对data-for-1.7.5模型数据的下载需求依然存在。 HanLP Portable的便携性使其可以轻松地在没有安装Java运行环境的机器上运行,这对于需要在没有复杂环境配置的轻量级系统上使用自然语言处理工具的开发者而言,是一个巨大的便利。此外,便携版本通常还包含了完整的示例和文档,这对于初学者快速入门和使用HanLP进行项目开发具有重要意义。 在获取HanLP Portable 1.8.6和对应模型下载时,用户通常会访问HanLP的官方资源或者开源社区的资源库,这里通常会提供下载链接和安装指南。官方文档可能会提供详细的安装步骤和使用说明,包括如何将data-for-1.7.5模型数据正确配置到HanLP Portable 1.8.6版本中,以及如何进行调试以确保一切运行正常。 HanLP的社区也是该工具包能够持续发展的重要因素之一。社区成员之间通过交流经验、分享解决方案等方式,为HanLP的改进和升级提供了宝贵的反馈。此外,HanLP的模型数据经常更新,以包含最新的语料和改进的算法,这样能够保持HanLP在中文自然语言处理领域的领先地位。 由于HanLP支持多种自然语言处理任务,并且拥有稳定的性能和易用性,它被广泛应用于文本挖掘、信息检索、机器翻译、语义理解等多个领域。随着人工智能和机器学习技术的发展,HanLP在处理自然语言方面的能力也在不断提升,从而能够更好地服务于学术研究和商业应用。 HanLP Portable 1.8.6版本和data-for-1.7.5模型数据的下载与使用对于中文自然语言处理来说是非常关键的。用户需要根据自己的需求选择合适版本的HanLP工具包和模型数据,并遵循官方提供的步骤进行安装和配置。此外,HanLP强大的社区支持和不断更新的模型数据也是其保持技术领先和满足用户多样化需求的重要保证。
2026-01-26 14:10:33 637.69MB hanlp
1
本文深入探讨了电力知识图谱与大模型的结合及其在电力行业的应用。首先介绍了电力知识图谱的构建过程,包括数据获取与处理、图谱构建等步骤,强调了从无序数据到结构化知识的转化。其次,分析了大模型如何赋能知识图谱,提升其智能分析和预测能力,实现知识与智能的深度融合。最后,通过设备全生命周期管理、电网调度优化、智能客服等实际案例,展示了这一结合在电力行业中的广泛应用。文章指出,电力知识图谱与大模型的结合是行业技术发展的新里程碑,未来将进一步推动电力行业向智慧化、自动化迈进。 在电力行业,知识图谱与大模型的结合为技术发展提供了新的方向,尤其是在实现智慧化、自动化管理方面。知识图谱的构建是一个将无序数据转化为结构化知识的过程,它需要进行数据获取与处理、图谱构建等步骤。在构建电力知识图谱时,首先要收集相关的数据,这包括但不限于电力系统的历史运行数据、电网结构、用户信息以及设备参数等。这些数据往往来自不同的来源,如传感器、数据库、文本记录等,且格式各异,因此需要经过清洗、转换和融合处理,形成可以用于构建知识图谱的标准化数据。 构建知识图谱的过程中,关键的一步是定义图谱的实体和关系。在电力知识图谱中,实体可能涉及各种电力设备、发电厂、变电站、供电区域等,而关系则描述了它们之间的逻辑连接,例如供电网络的连接关系、设备的维修关系、电网的调度关系等。实体和关系的定义需要结合行业知识和实际业务需求,以确保图谱能够准确反映电力系统的运行状况和管理需求。 大模型在这里的作用主要体现在提升知识图谱的智能分析和预测能力。通过训练大数据背景下的机器学习模型,大模型可以实现对复杂电力数据的深入理解。将这些模型应用于知识图谱中,可以挖掘出隐藏在数据背后的深层次知识,比如电力需求预测、故障诊断、风险评估等。通过这种深度结合,知识图谱不再是静态的数据存储库,而是一个能够提供动态分析和实时决策支持的智能系统。 在实际应用中,电力知识图谱与大模型的结合被用于多个方面。例如,在设备全生命周期管理中,通过分析设备的历史运行数据和故障记录,可以预测设备的维护周期,实现设备故障的预防性维护,从而提高电力系统的运行可靠性。在电网调度优化方面,基于知识图谱和大模型的系统能够实时响应电网运行状况,优化发电计划和负荷分配,提高能源利用效率。智能客服的应用则通过理解客户的查询内容,提供更为精准的服务和信息。 由此可见,电力知识图谱与大模型的结合不仅能够提高电力行业的智能化水平,还能够促进自动化管理的实现,对于电力系统的稳定运行和能源管理具有重要的实际意义。未来,随着技术的不断进步和应用的深入,这一结合有望在电力行业得到更广泛的应用,并持续推动行业的创新发展。
2026-01-26 13:01:26 7KB 软件开发 源码
1
GridFire用户界面 GridFire Clojure模型的用户界面。 具有Open Layers地图的单页Web应用程序,使用Express模板引擎和Node.js JavaScript运行时。 Localhost在端口3000上。 建立资料 将GeoTIFF转换为SQL文件 raster2pgsql -t auto -I -C FILE.tif landfire.FILE > FILE.sql 将SQL导入PostgreSQL数据库 psql -f FILE.sql -U gridfire -d gridfire 用户界面 GridFire用户界面的屏幕截图。 用户可以单击地图为单个刻录站点选择纬度和经度,或者单击并拖动以创建一个在模拟中随机刻录站点的框。 2018年5月11日带有参数形式的单一刻录选项的GridFire UI屏幕截图: 参数形式的GridFire UI
2026-01-26 10:55:50 3.62MB JavaScript
1
内容概要:本文由一位拥有五年整车性能仿真经验的工程师撰写,详细介绍了如何利用Cruise和Matlab进行联合仿真。文章涵盖了模型搭建的具体步骤、常见问题及其解决方案,如仿真步长不一致、参数调整、模型验证以及如何避免过度复杂的模型。此外,作者还分享了一些实用的代码片段,帮助新手更好地理解和应用这些工具。文中强调了与客户沟通的关键指标的重要性,并提供了具体的案例说明。 适合人群:汽车工程领域的研发人员和技术爱好者,特别是那些希望深入了解并掌握Cruise和Matlab联合仿真的专业人士。 使用场景及目标:适用于需要进行整车性能仿真的企业和个人,旨在提高仿真精度和效率,减少错误发生率,确保最终结果能够满足客户的实际需求。 阅读建议:读者可以通过本文快速上手Cruise和Matlab的联合仿真操作,同时学习到一些宝贵的实践经验,从而提升自己的专业技能。
2026-01-26 10:22:28 773KB
1
混合动力汽车AVL Cruise仿真:动力性与经济性联合探究及本田i-MMD混动整车模型的还原与再开发,混合动力汽车AVL Cruise动力性和经济性仿真,Cruise与Matlab simulink dll方式联合仿真(新能源混动汽车) 本田i-MMD混动整车模型(还原本田i-MMD量产车混动整车策略模型) 基于Matlab Simulink开发VCU控制策略模型,生成DLL文件与Cruise整车模型联合仿真(DLL为win64位,可直接运行出结果) 有控制策略详细的文档说明用点心就能看懂 可实现多种工作模式,可借鉴来开发各种新能源汽车能量管理策略 ,混合动力汽车; AVL Cruise; 动力性仿真; 经济性仿真; Cruise与Matlab simulink联合仿真; 本田i-MMD混动; VCU控制策略模型; DLL文件联合仿真; 工作模式; 新能源汽车能量管理策略,"基于Matlab的混合动力汽车仿真研究:i-MMD整车模型与VCU控制策略联合仿真"
2026-01-26 10:21:53 1.48MB 数据结构
1
该文章介绍了一种基于大QMT平台的动量模型策略,通过选择5个相关性较低的ETF标的(包括纳斯达克ETF、标普油气ETF、创业板ETF、黄金ET和30年国债ETF),利用5日收益率作为因子进行轮动交易。策略的核心逻辑是买入当前收益最高的标的,卖出其他持股,并在最高收益标的收益小于0时清仓。文章详细描述了策略的实现过程,包括因子计算、轮动算法、回测设置以及实盘操作,并提供了完整的源代码供学习参考。该策略旨在通过动量效应捕捉市场趋势,适用于量化交易研究和实践。 在量化交易领域,大QMT动量模型策略是一项先进的技术应用,它依托于成熟的大QMT平台进行市场分析与交易决策。该策略的执行依赖于选择五个不同类型的ETF资产:纳斯达克ETF、标普油气ETF、创业板ETF、黄金ETF和30年期国债ETF。这些资产在市场上的表现往往具有较低的相关性,能够构成一个多元化的投资组合。 在实施过程中,策略的主要工作原理是利用5日收益率作为一个重要指标,以此来评估各ETF标的的当前表现,并据此进行资产轮动交易。具体操作是持续持有表现最佳的资产,并对其他资产执行卖出操作。如果最佳资产的收益率降低到0以下,策略将执行清仓操作,退出市场以规避潜在风险。 文章详细阐述了实现该策略的步骤,包括如何计算收益因子、如何执行轮动算法、如何设置回测环境以及如何进行实际交易操作。不仅如此,文章还提供了完整的源代码,这使得对策略感兴趣的读者或者量化交易的研究人员可以细致研究并复现这一策略。 大QMT动量模型策略的实质是利用市场中的动量效应来捕捉市场趋势。动量效应指的是资产价格在一定时期内持续上升或下降的趋势,交易者可以通过分析这种趋势来预测未来价格的方向,并据此做出买入或卖出的决策。策略的核心在于挑选那些具有正动量且收益率最高的资产,而卖出或避免那些收益率不佳的资产。 此外,策略还包含了止损机制,即在最高收益标的的收益率下降至0时执行清仓操作,这一措施有效地控制了单笔交易的风险敞口。在量化交易实践中,风险管理是极为重要的一环,因为即使策略总体表现良好,单一交易的大幅亏损也可能对整个投资组合造成长期的不利影响。 大QMT动量模型策略不仅适用于专业投资者,也适合于对量化交易有兴趣的学术研究者和学生。策略的公开源代码使其成为一个学习和研究量化交易策略的宝贵资源。 在应用大QMT动量模型策略时,需要注意的是,虽然策略的逻辑听起来简单明了,但实际操作中需要综合考虑交易成本、市场流动性、资产价格波动等多种因素。同时,还需要定期审视和调整策略参数以适应市场的不断变化。此外,对于任何基于历史数据开发的交易策略,都需要在实际应用中持续进行风险评估和绩效监控,确保策略能够适应未来的市场环境。 策略的源代码是研究和实施该策略的起点,但量化交易者还需要结合自己的市场理解、风险偏好和交易目标,对策略进行相应的调整和完善。策略的开发和应用是一个不断迭代和优化的过程,需要交易者持续投入精力和资源。
2026-01-25 21:35:14 350KB 软件开发 源码
1