stm32实现简易示波器,利用iic0.96oled显示屏以及adc
2025-09-29 14:32:01 6.55MB stm32
1
内容概要:本文记录了一位工程师调试Alinx公司软件无线电射频Zynq UltraScale+RFSoC FPGA开发板的经历。文章详细描述了从尝试原厂提供的demo工程开始,到解决DAC输出频率与设置不匹配问题的全过程。调试过程中,作者通过ILA抓取信号、频谱仪检测DAC输出频率、信号源输入验证ADC采集信号频谱、检查RF Data Converter配置、分析Vitis代码以及最终确认AXI总线时钟频率等一系列步骤,逐步排查并解决了问题。最终发现,问题根源在于Vitis代码中对ADC抽取和DAC插入值的配置未考虑到Sample per AXI4-Stream Cycle的因素。通过对代码进行修正,成功实现了预期的频率输出和信号采集效果。; 适合人群:具有一定硬件调试经验的FPGA开发工程师或射频工程师,尤其是对RFSoC芯片有一定了解的技术人员。; 使用场景及目标:①帮助读者理解RFSoC芯片的调试流程和常见问题;②提供详细的故障排查思路和方法,特别是针对DAC和ADC频率设置不匹配的问题;③指导读者如何正确配置Vitis代码以确保RF Data Converter的正常工作。; 阅读建议:本文提供了丰富的实战经验和具体的调试步骤,建议读者在遇到类似问题时参考本文的排查思路,并结合自己的项目环境进行实践。同时,对于文中提到的技术细节,如ILA信号抓取、频谱仪检测等,读者可以深入研究相关工具的使用方法,以便更好地应用于实际工作中。
2025-09-28 12:26:39 449KB FPGA ADC/DAC 嵌入式系统 Vitis
1
基于FPGA的Verilog实现FOC电流环系统设计与实现方法——基于ADC与S-PWM算法优化及其代码解读手册,带simulink模型与RTL图解。,基于FPGA的FOC电流环手动编写Verilog实现:高效、可读性强的源码与Simulink模型组合包,基于FPGA的FOC电流环实现 1.仅包含基本的电流环 2.采用verilog语言编写 3.电流环PI控制器 4.采用SVPWM算法 5.均通过处理转为整数运算 6.采用ADC采样,型号为AD7928,反馈为AS5600 7.采用串口通信 8.代码层次结构清晰,可读性强 9.代码与实际硬件相结合,便于理解 10.包含对应的simulink模型(结合模型,和rtl图,更容易理解代码) 11.代码可以运行 12.适用于采用foc控制的bldc和pmsm 13.此为源码和simulink模型的价,不包含硬件的图纸 A1 不是用Matlab等工具自动生成的代码,而是基于verilog,手动编写的 A2 二电平的Svpwm算法 A3 仅包含电流闭环 A4 单采样单更新,中断频率 计算频率,可以基于自己所移植的硬件,重新设置 ,基于FPGA的FO
2025-09-27 15:53:14 83KB xbox
1
内容概要:本文详细介绍了基于ADS54J60的FMC HPC采集卡的设计与实现。该采集卡拥有4个通道,每个通道能够达到1Gsps的采样率和16bit的精度。文章首先探讨了硬件设计的关键要素,包括电源管理、PCB布局、时钟分配以及信号完整性优化。接着深入讲解了FPGA代码实现,涵盖了SPI配置、JESD204B接口、数据缓存机制等方面的技术细节。最后,作者分享了一些实际应用案例和调试经验,强调了在高速信号采集过程中需要注意的问题及其解决方案。 适合人群:从事高速信号采集系统设计的研发工程师和技术爱好者。 使用场景及目标:适用于需要高精度、多通道同步采集的应用场合,如雷达中频采集、示波器等领域。目标是帮助读者掌握从硬件设计到软件实现的完整流程,提高系统性能和稳定性。 其他说明:文中提供了详细的原理图、PCB布局图、Verilog代码片段以及Python脚本,便于读者理解和复现。此外,还附有完整的Altium工程文件和Gerber制板文件,方便进一步开发和量产。
2025-09-23 09:32:43 352KB
1
标题中的“基于STM32F103、LCD1602、MCP3302(spi接口)ADC转换器应用proteus仿真设计”表明这是一个关于微控制器STM32F103的项目,它结合了LCD1602显示屏和MCP3302 ADC转换器,所有这些组件通过Proteus仿真工具进行模拟测试。在这个项目中,我们将深入探讨STM32F103微控制器、LCD1602显示模块、MCP3302 SPI接口ADC的工作原理以及如何在Proteus环境中进行仿真。 STM32F103是意法半导体(STMicroelectronics)推出的一款基于ARM Cortex-M3内核的微控制器,具有高性能、低功耗的特点。它提供丰富的外设接口,包括SPI、I2C、UART等,适用于各种嵌入式应用。在这个项目中,STM32F103将作为主控制器,管理数据采集和屏幕显示。 LCD1602是一种常见的字符型液晶显示器,能够显示两行、每行16个字符。它通过I2C或4线串行接口与微控制器通信。在STM32F103的应用中,我们需要配置相应的GPIO引脚,编写驱动程序来控制LCD1602的背光、显示字符和清除屏幕等功能。 MCP3302是一款12位、单通道、SPI接口的模数转换器(ADC),用于将模拟信号转换为数字值。SPI(Serial Peripheral Interface)是一种同步串行通信协议,由主设备(在这里是STM32F103)控制,提供数据传输。MCP3302的使用需要设置STM32的SPI时钟、配置片选信号(CS)、发送命令和读取转换结果。 在Proteus仿真环境中,我们可以构建硬件电路模型,连接STM32、LCD1602和MCP3302,然后运行微控制器的固件(如STM32F103C8.hex)进行仿真。FREERTOS & LCD1602 & MCP3302(SPI) application.pdsprj文件可能是一个包含FreeRTOS实时操作系统、LCD1602和MCP3302 SPI接口配置的工程文件。FreeRTOS是一个轻量级的实时操作系统,提供任务调度、同步和互斥等机制,有助于管理多任务并提高系统的响应性。 “Middlewares”文件夹可能包含了用于STM32与LCD1602、MCP3302通信的中间件库,比如SPI通信库和LCD驱动库。这些库函数简化了底层硬件操作,使得开发人员可以更专注于应用程序逻辑。 这个项目涵盖了嵌入式系统开发的核心技术,包括微控制器编程、外围设备驱动、实时操作系统以及硬件仿真实践。通过这样的设计,开发者可以学习如何在STM32平台上实现数据采集、处理和可视化,并了解如何在Proteus中验证和调试系统功能。
2025-09-19 12:22:16 250KB stm32 proteus
1
### ADS8866 ADC转换芯片的关键知识点 #### 一、概述 ADS8866是一款由德州仪器(Texas Instruments)生产的16位分辨率、最高采样速率为100kSPS(每秒样本数)的逐次逼近寄存器(Successive Approximation Register, SAR)模数转换器(Analog-to-Digital Converter, ADC)。该芯片具有微型封装、低功耗等特点,适用于多种应用场合。 #### 二、主要特性与技术指标 1. **封装**: - 微型小外形封装 (MSOP)-10 或者小型尺寸无引脚封装 (SON)-10。 - 尺寸紧凑,适用于空间受限的应用环境。 2. **采样速率**:最高可达100kHz,满足大多数高速数据采集需求。 3. **输入范围**: - 单端输入,范围为0至+VREF。 - 支持单极输入,输入范围从-0.1V至VREF+0.1V。 4. **电源电压**: - 数字电源(DVDD):1.65V至3.6V。 - 模拟电源(AVDD):2.7V至3.6V。 - 基准电源(VREF):2.5V至5V,独立于AVDD。 5. **串行接口**: - 提供SPI兼容串行接口,支持菊花链连接,便于多器件级联。 6. **性能指标**: - 信噪比(SNR):93dB。 - 总谐波失真(THD):-108dB。 - 积分非线性误差(INL):±1.0 LSB(典型值)、±2.0 LSB(最大值)。 - 差分非线性误差(DNL):±1.0 LSB(最大值),达到16位无丢码(NMC)。 7. **温度范围**:-40°C至+85°C。 8. **功耗**: - 在100kSPS时为0.7mW。 - 在10kSPS时仅为70μW。 - 断电状态下(AVDD)电流仅为50nA。 9. **其他特点**: - 不需要单独的低压差稳压器(LDO)来为ADC供电。 - 满量程阶跃稳定至16位仅需1200ns。 #### 三、应用场景 1. **自动测试设备(Automated Test Equipment, ATE)**:适用于高精度测试设备中的数据采集系统。 2. **精密医疗设备**:如医学成像系统、生物传感器等,对精度和稳定性要求较高的医疗应用。 3. **仪表和处理器卡**:用于各种工业控制、自动化测量设备等。 4. **低功耗、电池供电仪器**:如便携式数据记录器、手持式分析仪器等。 #### 四、电路设计要点 1. **电源设计**: - 确保数字电源(DVDD)和模拟电源(AVDD)之间的隔离,避免相互干扰。 - 选择合适的去耦电容放置在每个电源引脚附近,以减少电源噪声。 2. **输入信号调理**: - 对于单端输入信号,可能需要进行适当的放大或滤波处理,确保输入信号范围符合要求。 3. **串行接口配置**: - SPI兼容串行接口支持菊花链连接,可通过软件配置实现多个ADS8866芯片级联。 - 注意SPI接口的时序匹配问题,确保与其他器件之间的通信稳定可靠。 4. **接地设计**: - 为获得最佳性能,建议采用多点接地策略,特别是对于模拟信号路径。 - GND引脚应通过低阻抗路径连接到地平面。 5. **温度考虑**: - ADS8866的工作温度范围为-40°C至+85°C,在极端温度条件下使用时,需考虑温度对性能的影响。 ADS8866是一款高性能、低功耗的16位ADC转换芯片,适用于多种需要高精度、快速响应及低功耗的应用场景。其独特的设计使其成为许多电子设备的理想选择。
2025-09-18 09:38:11 1.34MB
1
稳定驱动,带五次平均值,1rdgs/s,五位半电压表,带前端电路可负压采样,单18650供电或USB,【F103单片机HAL库硬件spi驱动LTC2400+OLED就地显示,五位半模块-哔哩哔哩】 https://b23.tv/ERXvOO6 在深入探讨F103单片机使用HAL库实现硬件SPI驱动LTC2400模数转换器(ADC)并结合OLED显示屏就地显示功能之前,我们有必要先了解一下这些组件和相关技术的基本概念。 F103单片机是STMicroelectronics(意法半导体)生产的一款高性能的32位微控制器,它属于STM32系列,广泛应用于嵌入式系统和物联网领域。HAL库(硬件抽象层库)是ST公司为其MCU提供的软件库,它提供了一套标准的API接口,用于简化硬件编程,使得开发者能够不必深入了解硬件的底层细节而专注于应用层的开发。 LTC2400是一款24位的Delta-Sigma模数转换器,具有高精度和高分辨率的特点,常用于精确的模拟信号采集。它能够将模拟信号转换为数字信号,并通过SPI接口与微控制器通信。该转换器通常用在精密测量和数据采集系统中。 OLED(有机发光二极管)显示屏则是一种显示技术,它可以提供高对比度和视角较宽的显示效果。与传统的LCD显示屏相比,OLED在显示黑色时可以完全关闭像素,因此更加省电,并且响应速度更快。 在这个项目中,F103单片机通过HAL库驱动LTC2400进行模拟信号采集,随后处理采集到的数据,将结果显示在OLED屏幕上。整个系统具备以下特点: 1. 使用五次平均值算法来提高测量的稳定性和准确性。这种算法通过多次采样并计算平均值来减少随机误差,从而得到更稳定可靠的测量结果。 2. 系统能够以1rdgs/s(读数每秒)的速度进行数据采集。这意味着每秒钟可以进行一次读数,对于动态信号的监测十分有用。 3. 设计支持五位半的电压表功能,能够实现高精度的电压测量。 4. 系统的前端电路设计支持负压采样,这意味着可以测量低于地电位的信号,这在一些特殊的测量需求中非常有用。 5. 该系统可以使用单个18650电池供电,也可以通过USB接口供电,这为系统的便携性和适用性提供了便利。 6. 项目源代码中可能包含与硬件相关的初始化设置,数据采集流程,以及数据显示的程序代码。 7. 从提供的标签来看,“驱动 LTC2400 24位ADC 电压表”,可以推测该工程也包含对LTC2400这款高精度ADC的初始化、配置、读取等相关操作。 这个项目展示了如何利用F103单片机结合高效的数据处理算法和直观的显示技术,实现了一个精确、便携的数字电压测量系统。通过HAL库提供的标准API,开发者可以更加快速和容易地将LTC2400 ADC与OLED显示屏整合到自己的嵌入式系统中。
2025-09-08 11:50:45 13.29MB 24位ADC
1
内容概要:本文档提供了关于10bit SAR ADC电路的详尽设计与仿真指导,涵盖200多页的设计文档和仿真资源。主要内容包括详细的电路设计说明、Virtuoso仿真环境配置、以太网和PLL电路实例、以及进阶ADC资源。文档不仅介绍了经典电荷重分配架构的SAR ADC设计,还包括优化的DAC阵列开关控制、电荷注入补偿机制、高精度电容布局方法、以及全面的仿真验证策略。此外,还提供了一些高级特性,如以太网PHY参考设计、PLL抖动分离脚本、Pipeline和Sigma-Delta ADC实现等。 适合人群:从事模拟电路设计和仿真的工程师和技术人员,尤其是对ADC设计感兴趣的从业者。 使用场景及目标:适用于希望深入了解SAR ADC设计原理及其仿真验证的技术人员。目标是帮助用户掌握从基本设计到复杂仿真的全过程,提高ADC设计的成功率和可靠性。 其他说明:文档中包含了丰富的实战经验和技巧分享,如动态逻辑控制、电容布局优化、蒙特卡洛仿真设置等,有助于解决实际项目中的常见问题并提升设计质量。
2025-09-05 09:50:55 1.08MB
1
基于SMIC180nm工艺的10位20MHz SAR ADC设计:完整电路图与仿真文档解析,基于SMIC 180nm工艺的10bit 20MHz SAR ADC设计手册:栅压自举开关、高速动态比较器与DFT还原测试,10bit 20MHZ SAR ADC 设计,smic180nm,有设计文档原理解读 有工艺库,直接导入自己的cadence就能运行,有效位数ENOB为9.8,适合入门SAR ADC 结构: 常用栅压自举开关Bootstrap Vcm_Based开关时序 上级板采样差分CDAC阵列 两级动态比较器 比较器高速异步时钟 动态sar逻辑 10位DFF输出 10位理想DAC还原做DFT。 包括详细仿真文档,原理介绍,完整电路图,仿真参数已设好,可直接使用,在自己的电脑上就可以运行仿真。 适合入门SAR ADC的拿来练手 ,核心关键词: 1. 10bit 20MHZ SAR ADC 设计 2. SMIC180nm 工艺 3. 设计文档原理解读 4. 栅压自举开关Bootstrap 5. Vcm_Based开关时序 6. 上级板采样差分CDAC阵列 7. 两级动态比较器 8. 动态
2025-09-02 15:24:53 380KB gulp
1
内容概要:本文档详细介绍了基于SMIC180nm工艺的10bit 20MHz SAR ADC设计,涵盖从原理介绍到具体实现的全过程。首先,文档提供了详细的仿真设置,可以直接导入Cadence进行仿真,极大地方便了初学者。其次,文档深入探讨了各个关键模块的设计,如自举开关电路、差分CDAC阵列、动态比较器和异步时钟生成模块等。每个模块都有具体的VerilogA代码示例,并解释了关键参数的选择依据及其优化方法。此外,文档还提供了完整的测试脚本,用于评估ADC的性能指标,如ENOB、THD、DNL等。最后,文档给出了多个实用的调试技巧和注意事项,帮助用户更好地理解和优化设计。 适合人群:具备一定模拟电路和Verilog编程基础的工程师或学生,尤其是希望深入了解SAR ADC设计的人群。 使用场景及目标:① 学习SAR ADC的工作原理和设计方法;② 快速搭建并运行仿真环境,验证设计效果;③ 提升ADC设计能力,掌握关键模块的优化技巧。 其他说明:文档不仅提供理论讲解,还包括大量实际代码和测试脚本,使读者能够边学边练,快速上手。同时,文档还提供了丰富的调试经验和常见问题解决方案,有助于提高设计成功率。
2025-09-02 15:16:52 858KB
1