SAE J2602-2021是汽车行业内重要的通信规范,主要针对LIN(Local Interconnect Network)总线系统。LIN总线是一种低成本、低数据速率的串行通信网络,广泛应用于汽车电子系统中,如车窗、座椅调节、照明控制等。此规范的更新至2021版,旨在提升LIN网络的可靠性和效率,适应汽车技术的快速发展。 SAE J2602标准由美国汽车工程师学会(Society of Automotive Engineers)发布,它是全球汽车行业的重要技术参考。这个标准的目的是定义一个统一的接口和协议,使得不同厂商的LIN节点可以无缝协作,从而降低汽车制造商的开发成本和集成难度。 SAE J2602-1-2021、SAE J2602-2-2021和SAE J2602-3-2021三个文件分别涵盖了不同的方面: 1. SAE J2602-1-2021可能详细阐述了LIN协议的基础结构和框架,包括帧格式、报文调度、错误检测和恢复机制。这部分内容确保了LIN网络中的数据传输稳定且高效,同时考虑了网络容错能力。 2. SAE J2602-2-2021可能专注于物理层规范,定义了LIN信号的电气特性,如电压等级、数据传输速率、连接器和线缆标准。这些规定确保了在各种环境条件下的通信可靠性。 3. SAE J2602-3-2021可能包含了应用层协议的详细说明,包括节点间的通信过程、服务定义以及诊断和故障处理策略。这部分内容对于开发者理解和实现 LIN 应用程序至关重要。 在 LIN 总线规范中,几个关键概念包括: - 主节点(Master Node):负责调度和发送LIN网络中的所有通信,控制其他从节点(Slave Nodes)的行为。 - 从节点:响应主节点的请求,执行特定功能,不自主发起通信。 - 帧结构:包括同步场、标识符、数据场和CRC(循环冗余校验),确保数据准确无误地传输。 - 诊断:通过特定的报文和响应,系统能够检测并诊断LIN网络中的故障,以便及时修复。 SAE J2602-2021的更新可能包括对现有标准的增强,如提高数据传输速率、增加新的诊断功能、优化网络资源管理等,以应对日益复杂的汽车电子系统需求。此外,它也可能涉及对新能源汽车和智能驾驶系统中 LIN 网络应用的适应性改进。 SAE J2602-2021为汽车电子工程师提供了关于LIN通信的全面指导,帮助他们在设计和实施LIN网络时遵循统一的标准,确保系统的兼容性和可靠性。通过深入理解和应用这一标准,可以推动汽车行业的创新和发展。
2024-09-20 17:32:02 2.15MB 汽车电子 LIN总线规范 J2602
1
在对FPGA配置比特流文件时序进行分析的基础上,用常用的Flash ROM替代FPGA专用配置芯片,通过DSP外部高速EMIF总线,在Slave SelectMAP配置模式下实现双FPGA上电加载软硬件设计,解决了系统成本造价高的问题。
2024-09-14 10:11:29 96KB FPGA
1
ISO 11898-1:2024 (Road vehicles – Controller area network – Part 1: Data link layer and physical coding sublayer): 该文件基于之前的文件,将CAN XL和CAN FD light新纳入了ISO国际标准,并对CAN的三代协议,即CAN CC(classic)、CAN FD(flexible datarate)和CAN XL(extended data-field length),进行了详细说明。同时,此文件在附录A中对CAN FD light进行了标准化定义。本文件的颁布意味着CAN技术全系列的协议均已纳入ISO国际标准。截至本文件发布之日,ISO 已收到有关实施本文件可能需要的所有专利通知。
2024-08-20 10:53:23 1.08MB CAN总线 CAN通讯 CAN总线协议 汽车通讯
1
AXI4(Advanced eXtensible Interface 4)总线是一种广泛应用于FPGA(Field-Programmable Gate Array)设计的高性能、低延迟的接口标准,由ARM公司提出。它为处理器、存储器以及其他外设之间的数据传输提供了一种统一的通信机制。在本主题中,我们将深入探讨如何利用AXI4总线进行RAM(Random Access Memory)的读写操作,并结合仿真图来加深理解。 AXI4总线分为两种主要类型:AXI4-Lite和AXI4-Full。AXI4-Lite简化了协议,适用于简单的控制接口,而AXI4-Full则包含更完整的数据传输能力,支持突发传输和多通道。在这个场景中,我们关注的是AXI4-Lite,因为它通常用于对RAM进行读写访问。 AXI4-Lite总线包括地址(ADDR)、写使能(WSTRB)、写数据(WDATA)、读使能(RVALID)、读数据(RDATA)以及握手信号如写应答(WREADY)、读应答(RREADY)等。在进行RAM读写时,FPGA中的控制器会通过这些信号与RAM模块交互。 1. **写操作**: - 控制器首先通过ADDR线将要写入的数据地址发送到RAM。 - 接着,控制器通过WDATA线将数据传送到RAM,同时WSTRB线指示哪些字节有效(如果RAM是以字节为单位的)。 - RAM接收到地址和数据后,通过WREADY信号通知控制器它可以接收数据。一旦控制器收到此信号,它就会释放WSTRB和WDATA线,完成写操作。 2. **读操作**: - 控制器同样通过ADDR线发送读取地址。 - RAM读取对应地址的数据,然后通过RDATA线返回给控制器。此时,RVALID信号表明RAM已准备好发送数据。 - 控制器检测到RVALID信号后,通过RREADY信号告知RAM可以传输数据。一旦RAM接收到RREADY,它会释放RDATA线,完成读操作。 仿真图在这种情况下非常有用,因为它可以直观地展示AXI4总线上的信号变化,帮助设计者验证其逻辑是否正确。例如,可以看到地址如何随着时间变化,何时有数据传输,以及握手信号是如何协调读写操作的。 在FPGA实现中,通常会用到IP核( Intellectual Property Core),例如Xilinx的Block RAM或Memory Interface Generator(MIG),它们已经内置了AXI4-Lite接口,可以直接与AXI4总线连接。这样,设计者只需关注控制器的设计,而不必关心底层的RAM操作细节。 AXI4总线的使用极大地简化了FPGA设计中与RAM的交互,通过标准化的接口和明确的握手协议,确保了高效、可靠的读写操作。结合仿真图,我们可以更好地理解和调试设计,从而优化系统的性能。
2024-08-19 15:03:32 11.63MB fpga
1
i2c总线协议 i2c总线协议是一种双向串行总线,用于连接微控制器和外围设备。该协议由Philips公司开发,于1982年首次发布。i2c总线协议的主要特点是使用两根信号线,即SCL(时钟信号)和SDA(数据信号),实现数据传输。 1. i2c总线协议的发展历程 i2c总线协议经历了多个版本的发展。从1992年发布的版本1.0到2000年发布的版本2.1,每个版本都对协议进行了改进和优化。 * 版本1.0-1992:这是i2c总线协议的第一个版本,提供了基本的数据传输功能。 * 版本2.0-1998:该版本引入了新的功能,例如数据传输速率的提高和错误检测机制的改进。 * 版本2.1-2000:该版本进一步提高了数据传输速率,并引入了新的特性,如热交换和总线仲裁机制。 2. i2c总线协议的优点 i2c总线协议的使用可以为设计人员和厂商带来多种好处。 * 设计人员的得益:使用i2c总线协议可以简化硬件设计,降低成本,提高系统的可靠性和灵活性。 * 厂商的得益:i2c总线协议可以帮助厂商降低生产成本,提高产品的质量和可靠性,提高市场竞争力。 3. i2c总线协议的基本概念 i2c总线协议的基本概念包括: * 总线 arbitration:总线仲裁机制,用于解决总线冲突问题。 * slave address:从站地址,用于标识从站设备。 * 数据传输:i2c总线协议使用两根信号线(SCL和SDA)实现数据传输。 4. i2c总线协议的总体特征 i2c总线协议的总体特征包括: * 双线信号:i2c总线协议使用两根信号线(SCL和SDA)实现数据传输。 * 半双工模式:i2c总线协议使用半双工模式,允许多个从站设备连接到总线上。 * 可扩展性:i2c总线协议支持热交换和设备热拔插。 5. i2c总线协议的位传输 i2c总线协议的位传输过程包括: * 数据的有效性:i2c总线协议使用数据的有效性机制,确保数据传输的正确性。 * 起始和停止条件:i2c总线协议使用起始和停止条件,控制数据传输的开始和结束。 6. i2c总线协议的传输数据 i2c总线协议的传输数据包括: * 字节格式:i2c总线协议使用字节格式,实现数据传输。 * 数据传输速率:i2c总线协议支持多种数据传输速率,包括标准模式、快速模式和高速模式。 i2c总线协议是一种广泛应用的总线协议,具有多种优点和特征。它可以帮助设计人员和厂商提高系统的可靠性、灵活性和市场竞争力。
2024-07-30 10:34:13 881KB I2C
1
此Bootloader和App是在同一个工程下面的,支持在线调试,可以在线跟踪App和Boot的程序,另外App和Boot都支持CAN总线的接收和发送。有需要的同学可以放心下载,这个RL78的Bootloader设置还是比较麻烦的,没必要自己硬刚,我这个已经都设置好了,如果是做CAN升级的话,可以拿来直接用了。
2024-07-25 13:48:32 617KB Bootloader CAN总线
1
Arduino的OBD2 Arduino库,用于通过CAN总线从您的汽车读取OBD-II数据。 取决于库。 兼容硬件 请参阅。 安装 使用Arduino IDE库管理器 选择Sketch -> Include Library -> Manage Libraries... 在搜索框中输入OBD2 。 单击该行以选择库。 单击Install按钮以安装库。 使用Git cd ~ /Documents/Arduino/libraries/ git clone https://github.com/sandeepmistry/arduino-OBD2 OBD2 原料药 参见 例子 参见文件夹。 执照 该库下。
2024-07-19 11:12:24 16KB
1
AMBA总线协议中文版 AMBA(Advanced Microcontroller Bus Architecture)是一种高级微控制器总线体系结构,由ARM公司开发。AMBA总线协议是ARM公司的注册商标。该协议定义了一种高性能、灵活的总线架构,用于连接各种类型的微控制器和外围设备。 AMBA总线协议的主要特点包括: * 高性能:AMBA总线支持高频率的数据传输,能够满足高速数据传输的需求。 * 灵活性:AMBA总线支持多种总线配置和协议,可以适应不同的应用场景。 * 可扩展性:AMBA总线支持热插拔和热拔插,能够方便地添加或删除设备。 * 可靠性:AMBA总线提供了多种错误检查和纠正机制,能够确保数据传输的可靠性。 AMBA总线协议包括三个主要部分:AHB(Advanced High-performance Bus)、ASB(Advanced System Bus)和APB(Advanced Peripheral Bus)。AHB是一种高性能的总线,用于连接高速设备,如CPU和记忆体。ASB是一种系统总线,用于连接系统中的各种设备,如键盘、显示器等。APB是一种外围总线,用于连接外围设备,如UART、SPI等。 AMBA总线协议中的信号可以分为两类:控制信号和数据信号。控制信号用于控制总线的操作,如读写操作、地址信号等。数据信号用于传输数据,如数据总线、地址总线等。 AMBA总线协议还定义了一些常用的时序图惯例,用于描述总线的操作过程。时序图惯例包括时钟信号、数据信号、地址信号等。 在使用AMBA总线协议时,需要注意以下几点: * 版权声明:AMBA总线协议是ARM公司的注册商标,需要遵守相关的版权法规。 * 使用限制:AMBA总线协议仅供ARM公司的产品使用,其他公司或个人不得使用。 * 保密协议:AMBA总线协议中的信息属于保密信息,不能对外泄露。 AMBA总线协议是一种高性能、灵活的总线架构,广泛应用于各种微控制器和外围设备中。但是,在使用AMBA总线协议时,需要遵守相关的版权法规和使用限制。
2024-07-09 11:11:36 1.2MB AMBA总线
1
PXI总线接口技术(北航PPT),大致介绍PXI总线的,可以做了解用,毕竟是中文的嘛。共62页
2024-07-04 17:16:47 6.7MB
1
CAN(Controller Area Network)总线是一种广泛应用在汽车电子和工业自动化领域的串行通信协议,具有高可靠性、实时性以及错误检测能力。Xilinx FPGA(Field Programmable Gate Array)是可编程逻辑器件,常用于实现复杂数字系统,包括网络通信协议如CAN。在本项目中,我们将探讨如何使用Xilinx FPGA和Vivado设计套件来实现CAN IP( Intellectual Property核),以进行CAN总线通信。 CAN IP是预设计的硬件模块,它实现了CAN协议的物理层和数据链路层功能。在Xilinx FPGA中,可以使用Verilog语言编写这种IP核。Verilog是一种硬件描述语言,允许工程师以类似于软件编程的方式描述数字系统的硬件行为。 Vivado是Xilinx提供的集成设计环境,它包括了开发FPGA项目的全部流程,从设计输入、综合、布局布线到仿真和硬件编程。在Vivado中,可以通过IP Integrator工具将预先设计好的CAN IP核与用户自定义的Verilog模块集成,创建一个完整的系统。 在本项目中,源码“利用实现总线通信源码直接可用注释清晰实.html”和“利用实现总.txt”可能是详细的设计文档或者源代码部分,它们提供了CAN IP的实现细节和使用指南。源代码通常会包含CAN控制器的接收和发送状态机、错误检测和处理机制、以及与FPGA外部接口的连接逻辑。注释清晰的代码有助于理解和调试设计。 在Verilog代码中,你会看到如下的结构: 1. CAN控制器:管理CAN帧的发送和接收,包括位填充、位错误检测、帧错误检测等。 2. 时钟和同步:由于CAN总线是同步通信,所以需要精确的时钟管理和同步逻辑。 3. 总线接口:连接到物理层,实现CAN信号的电平转换和传输。 4. 用户接口:提供简单的API(Application Programming Interface)供上层应用调用,例如发送和接收函数。 在Vivado中实现这个设计,你需要完成以下步骤: 1. 创建一个新的Vivado工程,并添加CAN IP核到工程中。 2. 使用IP Integrator配置CAN IP参数,如波特率、数据位数等。 3. 集成用户逻辑,将CAN IP与你的应用接口相连。 4. 进行功能仿真以验证设计正确性。 5. 生成比特流文件并下载到FPGA中。 6. 实际硬件测试和调试。 在FPGA开发中,了解CAN总线协议规范(如ISO 11898)以及Verilog编程至关重要。此外,Vivado的使用技巧和经验也是成功实现的关键,例如合理优化资源使用、掌握调试工具的使用等。通过这个项目,你可以深入理解CAN总线通信的硬件实现,并且掌握在FPGA上实现网络协议的方法。
2024-07-03 16:16:57 2KB 网络 网络 fpga开发 网络协议
1