假新闻检测系统 提议的系统分为多个阶段,以根据数据挖掘操​​作领域(例如数据收集,数据预处理,特征提取,特征选择和机器学习模型的实现)完全隔离工作,以进行将新闻分类为是非的预测并预测新闻属于预测标签的概率。 实施了许多机器学习模型,并根据准确性,f1得分,准确性和召回率等指标对机器学习模型的性能进行了比较。 评估模型性能的主要决定指标被选为f1得分,其中考虑了精度和召回率之间的折衷。 在对以下机器学习模型(SVM,逻辑回归,朴素贝叶斯和随机森林)进行了训练和调整之后,实施了投票分类器,将上述所有模型组合在一起,形成了一个集成分类器,该分类器使用所有这些分类器来预测标签和分类概率并使用软投票方法做出最终预测。 建议的系统步骤: 数据收集:为了实施和测试所建议的系统,使用了William Yang Wang []的“说谎者,说谎者裤子着火:用于虚假新闻检测的新基准数据集”。 该存储库中
2021-12-08 15:47:24 31.54MB 系统开源
1
在此上签出应用 介绍 您是否相信从社交媒体听到的所有新闻? 所有新闻都不真实,对吧? 那么,您将如何检测到假新闻? 我们将使用多项朴素贝叶斯方法将从新闻链接中删除的新闻分类为伪造或真实。 数据 我们将用于此python项目的数据集-我们将其称为news.csv。 该数据集的形状为7796×4。 第一列标识新闻,第二列和第三列分别是标题和文本,第四列具有标签,指示新闻是REAL还是FAKE。 数据集可以从下载 项目结构 该项目包括四个主要部分: fake_news_detection.py-这包含我们的机器学习模型的代码以对模型进行分类 app.py-包含Flask API,它们通过GUI或API调用接收新闻URL,从URL中提取文章,将其提供给模型并返回预测。 模板-此文件夹包含HTML模板,允许用户输入url并显示新闻是假新闻还是真实新闻。 静态-此文件夹包含CSS文件。 req
2021-12-08 15:46:26 2MB Python
1
假新闻 :newspaper: 使用Python分类WebApp Sourcerer 用法:- 克隆我的存储库。 在工作目录中打开CMD。 运行pip install -r requirements.txt 在任何IDE(Pycharm或VSCode)中打开项目 运行Fake_News_Det.py ,转到http://127.0.0.1:5000/ 如果要通过一些更改来构建模型,则可以检查Fake_News_Detection.ipynb 。 您可以检查网络应用程序是否正常运行。 有时预测可能是错误的。 屏幕截图 笔记 该项目仅用于学习目的,不要认为它可以实时工作,因为模型是在历史和有限的数据上进行训练的。 对于这种系统的实时构建,我们需要更新的数据集,并且需要在特定的时间间隔内构建模型,因为新闻数据可以在几秒钟内更新,因此我们的模型也应该使用该数据进行更新。 随便 :index_pointing_up: 我和星星 :star:
2021-12-08 10:10:50 13.68MB JupyterNotebook
1
虚假新闻检测分类代码
2021-12-05 14:13:14 7KB 机器学习
1
真实新闻 使用Python检测虚假新闻
2021-12-03 01:43:51 11.25MB JupyterNotebook
1
fake_news_detection 使用Kaggle数据集检测假新闻的简单模型
2021-12-03 01:34:50 35KB nlp data-science machine-learning news
1
假gcs服务器 fake-gcs-server为Google Cloud Storage API提供了一个模拟器。 它可以用作Go项目中的库和/或独立的二进制/ Docker映像。 该库位于包中,可以在Go包的测试套件中使用。 该仿真器作为二进制文件提供,可以手动构建,从下载或从Docker Hub( ) 。 在Docker中使用模拟器 您可以将Google Cloud Storage作为独立的服务器存根/模拟(例如数据存储/发布订阅模拟器),非常适合集成测试和/或其他语言的测试,您可能希望在Docker容器中运行fake-gcs-server : docker run -d --n
2021-11-26 13:26:12 105KB emulator google cloud storage
1
假新闻检测器 欢迎分类为假新闻。 目标 端到端的机器学习管道将: 提取原始文本数据。 将原始文本数据处理为段落向量 将受过训练的有监督学习分类器应用于段落向量,以将原始文本标记为fake或not_fake fake 知识 比较当今使用的词嵌入应用程序的不同方法 在两者上都使用像Gensim这样的神经嵌入实现 词向量化和 段落矢量化 超调谐神经嵌入算法作为端到端流水线的一部分 使用标准的行业分类器,并将其与端到端管道集成 对多阶段机器学习管道进行故障排除 结构 (第一阶段)假新闻分类: 分类器应用程序伪造新闻文本。 嵌入代码是为学生事先准备的,因此他们可以专注于应用分类器基础知识。 将关注度量(精度,召回率,F1)和模型选择 (第2阶段)文本嵌入技术: 什么是Word2Vec,什么是Paragraph2vec 回顾历史策略以及word2vec为什么效果更好 TF IDF(历史简
2021-11-16 18:44:41 215.26MB machine-learning pipeline word2vec classification
1
Windows Mobile上的GPS模拟软件。 FAKE GPS ======== Copyright(c) 2005 Microsoft Corporation Fake GPS enables developers to receive data using the GPS APIs even if there is no GPS receiver on the device. The GPS data is read from NMEA .txt files that get deployed to \Program Files\FakeGPS\GPSFiles when FakeGPS.CAB is installed on the device. Fake GPS must run in privileged mode because it interacts with the GPS intermediate driver and writes to the privileged area of the registry. Fake GPS ships with a couple of sample data files: dixies.txt - NMEA files that immediately starts sending a GPS location to the GPS driver. fakegpsdata.txt - Same as dixies.txt, but it takes some time to report a new location.
2021-10-18 20:38:03 107KB Windows Mobile Fake GPS
1