随着信息技术的不断发展,数据共享成为了一个重要的研究领域。本文档集旨在通过Python编程语言,复现一篇关于生产和运营管理(Production and Operations Management,简称POMS)的学术论文。该论文探讨了在线市场中具有合作竞争关系的卖家如何共享信息以优化其销售策略。本压缩包不仅包含了这篇论文的全文,还提供了详细的推导过程以及用于求解博弈论问题的Python代码。 该压缩包提供了相关的学术论文,这为理解和复现研究结果提供了理论基础。论文详细描述了在线市场中卖家之间的互动模式,以及信息共享如何影响他们的最优利润和定价策略。通过对合作竞争卖家行为的研究,作者们为读者揭示了信息共享对市场效率的影响机制。 压缩包中包含了一个名为“推导过程.docx”的Word文档,详细记录了从数学模型的建立到最终求解过程的所有步骤。这份文档对于理解和掌握整个求解过程至关重要,尤其是对于初学者或对博弈论不太熟悉的人来说,它提供了一个清晰的学习路径。 此外,还有四个Python脚本文件,分别是case 1到case 4 solve POMS information sharing.py。这些脚本对应论文中的不同情景案例,用以求解相关的博弈论问题。每个脚本都是一个独立的Python程序,可以单独运行,并展示出在特定假设条件下,信息共享对于卖家最优利润、价格以及响应策略的影响。 还有三个图片文件,分别是case1_optimal_profits.png、case1_optimal_price.png和case1_reseller_respond.png。这些图片进一步可视化了信息共享前后卖家的最优利润、定价和响应情况,使得复杂的数据分析和数学模型变得更加直观易懂。 对于那些希望通过编程实践来理解和掌握博弈论在实际商业环境中的应用的人来说,这套资料提供了一个宝贵的学习机会。同时,对于学术研究人员而言,本压缩包中的论文和代码能够帮助他们验证研究结果,甚至在此基础上进一步进行研究。通过这套资料的共享,我们可以期待在生产和运营管理领域,尤其是在线市场信息共享问题上,会有更多的创新和进步。 这套资料不仅为学术研究提供了实用的工具和方法,也为企业实践提供了指导。它通过Python编程语言和详细的数据分析,为理解和应用博弈论在现代商业环境中的策略决策提供了深入的见解和操作指南。
2025-04-12 20:55:04 1.55MB python POMS 论文复现
1
"FSDAF遥感影像时空融合 python代码"涉及的是遥感图像处理领域中的一个重要技术——时空融合。在遥感数据处理中,时空融合是将不同时间或空间分辨率的遥感影像进行综合,以获取更高精度和更丰富的信息。这种技术常用于气候变化监测、土地覆盖变化分析、城市规划等领域。 "FSDAF遥感影像时空融合 python代码"表明这是一个使用Python编程语言实现的时空融合算法。Python因其强大的库支持和易读性,在遥感数据分析和图像处理中广泛应用。该代码可能包含了从数据预处理到融合过程的完整流程,包括数据导入、预处理、特征提取、融合算法实现以及结果可视化等步骤。 1. **Python开发语言**:Python是一种高级通用型编程语言,因其简洁明了的语法和丰富的第三方库,尤其适合进行科学计算和数据分析,包括遥感影像处理。 2. **后端**:尽管通常遥感影像处理更多地被认为属于前端或数据科学范畴,但这里提到“后端”,可能是指该代码集成了服务器端的功能,如数据存储、计算资源管理等。 3. **时空融合**:这是遥感图像处理的关键技术,通过结合多时相或多源遥感图像,提高图像的空间和时间分辨率,以获得更准确的信息。 在Python中实现时空融合,可能用到的库包括: - **GDAL/OGR**:用于遥感数据的读取和写入,支持多种遥感数据格式。 - **Numpy**:提供高效的数组操作,用于处理遥感图像的像素数据。 - **Pandas**:用于数据管理和分析,可能用于预处理阶段的数据清洗和整理。 - **Scikit-image**或**OpenCV**:提供图像处理功能,如滤波、特征提取等。 - **Matplotlib**或**Seaborn**:用于数据可视化,展示融合前后的图像对比。 具体到FSDAF(可能是某种特定的时空融合算法),其全称未给出,可能是一种自适应的融合方法,根据图像特性自动调整融合策略。该算法可能涉及到的步骤包括: 1. **数据预处理**:校正、重采样、裁剪等,确保不同源的遥感数据在空间和时间上对齐。 2. **特征提取**:可能通过统计分析、边缘检测等方法,提取遥感图像的关键信息。 3. **融合策略**:基于FSDAF算法,融合不同时间或空间分辨率的图像,生成新的高分辨率图像。 4. **评估与优化**:使用评价指标如信息熵、均方根误差等,评估融合效果,并可能进行参数调整优化。 5. **结果输出与展示**:将融合后的图像保存并用图形化工具展示,以便进一步分析。 这个项目是一个使用Python实现的遥感影像时空融合应用,涵盖了数据处理、算法实现和结果可视化等多个环节,对于学习和实践遥感图像处理具有很高的价值。
2025-03-30 10:33:21 7.72MB python 开发语言 时空融合
1
这段 Python 代码主要实现了基于 EEGNet 模型的脑电信号(EEG)分类任务。它使用了 K - 折交叉验证和数据打乱等技术来评估模型的性能,包括训练集准确率、测试集准确率、敏感度(True Positive Rate,TPR)、特异度(True Negative Rate,TNR)和误报率(False Positive Rate,FPR)等指标。
2025-02-06 23:33:29 18KB python
1
ROS的python版本的代码,python版本的代码优点是比cpp代码更加容易上手,新手很快就能掌握,缺点是运行速度比cpp稍慢。这个代码是ROS的“helloworld”的代码发布与订阅,是比较好的rospy的入门资料
2024-12-26 11:09:08 1.9MB python版本的发布和
1
时间序列预测是基于时间数据进行预测的任务。它包括建立模型来进行观测,并在诸如天气、工程、经济、金融或商业预测等应用中推动未来的决策。 本文主要介绍时间序列预测并描述任何时间序列的两种主要模式(趋势和季节性)。并基于这些模式对时间序列进行分解。最后使用一个被称为Holt-Winters季节方法的预测模型,来预测有趋势和/或季节成分的时间序列数据。 为了涵盖所有这些内容,我们将使用一个时间序列数据集,包括1981年至1991年期间墨尔本(澳大利亚)的温度。这个数据集可以从这个Kaggle下载,也可以文末获取。喜欢记得收藏、关注、点赞。 时间序列预测是数据分析领域中的一个重要任务,特别是在处理与时间相关的数据时,如天气预报、工程计划、经济指标预测、金融市场分析以及商业决策等。本文聚焦于如何利用Python进行时间序列预测,特别是针对具有趋势和季节性特征的数据。时间序列通常包含两个主要模式:趋势和季节性。 **趋势**是指数据随时间的上升、下降或保持稳定的状态。在时间序列分析中,识别和理解趋势是至关重要的,因为它直接影响到预测的准确性。趋势可以是线性的、非线性的,甚至是周期性的。 **季节性**则是指数据在特定时间段内呈现出的重复模式。例如,零售业的销售量可能在节假日季节显著增加,而天气数据可能会根据四季的变化而波动。季节性分析有助于捕捉这种周期性的变化,以更准确地预测未来。 为了分析和预测具有趋势和季节性的时间序列,本文介绍了**Holt-Winters季节方法**。这是一种扩展的指数平滑法,它可以分解时间序列为趋势、季节性和随机性三部分,从而更好地理解和预测数据。Holt-Winters方法特别适用于有明显季节性模式的数据,如我们的例子中,1981年至1991年墨尔本的温度数据。 我们需要导入必要的Python库,如`pandas`、`numpy`、`matplotlib`以及`statsmodels`,后者提供了一系列统计模型和测试工具,包括用于时间序列预测的ExponentialSmoothing类。数据集包含了日期和相应的温度值,通过`datetime`库处理日期,使用`ExponentialSmoothing`构建模型进行预测。 在进行分析前,通常会先对数据进行可视化,以直观地查看时间序列中的趋势和季节性。在这里,我们创建了一个图形,用垂直虚线表示每年的开始,以便观察温度变化的年度模式。 接下来,会使用统计检验,如**ADF(Augmented Dickey-Fuller)检验**和**KPSS检验**,来判断时间序列是否平稳。如果数据不平稳,可能需要进行差分操作,以消除趋势或季节性,使其满足预测模型的要求。 一旦数据预处理完成,就可以使用Holt-Winters方法建立模型。此方法包括三个步骤:趋势平滑、季节性平滑和残差平滑。通过这三个步骤,模型可以学习到时间序列中的长期趋势和短期季节性模式,然后用于生成预测。 模型会进行训练,并对未来看似不可见的数据点进行预测。预测结果可以通过绘制预测值与实际值的比较图来评估模型的性能。通过调整模型参数,如平滑系数,可以优化预测结果。 总结来说,Python提供了强大的工具来处理和预测具有趋势和季节性的时间序列数据。通过理解时间序列的基本模式,结合Holt-Winters季节方法,我们可以有效地对各种领域中的复杂数据进行预测,为决策制定提供科学依据。在这个过程中,数据的预处理、模型选择、模型训练以及结果评估都是至关重要的步骤。对于那些需要处理时间序列问题的IT从业者,掌握这些知识和技巧是非常有益的。
2024-11-25 07:07:54 1.78MB python
1
果蝇优化算法(Flies Optimization Algorithm,简称FOA)是一种基于生物行为的全局优化方法,源自于自然界中果蝇寻找食物的行为。这种算法利用群体智能的概念,模拟果蝇在空间中随机飞行并根据嗅觉(即目标函数值)来调整飞行方向,从而找到最佳解。在IT领域,FOA常被应用于复杂问题的求解,如工程设计、机器学习模型参数调优、网络优化等。 我们来看一下果蝇优化算法的基本原理。在FOA中,果蝇群体代表一组解决方案,每个果蝇的位置表示一个潜在的解。算法初始化时,果蝇们随机分布在搜索空间中。随着迭代进行,果蝇会根据以下两个策略更新位置: 1. 随机飞行:果蝇按照一定的概率随机改变飞行方向,这有助于跳出局部最优,探索更广泛的解决方案空间。 2. 嗅觉引导:果蝇会被更佳的解(即目标函数值更低的点)吸引,调整飞行方向朝向这些区域。这样可以确保算法逐渐逼近全局最优解。 在Python中实现FOA,我们需要定义以下几个关键步骤: 1. **初始化**:随机生成果蝇群体的初始位置,这对应于待解决问题的初始解集。 2. **计算适应度**:对每个果蝇的位置计算目标函数值,以评估其优劣。 3. **更新规则**:根据随机飞行和嗅觉引导策略更新果蝇的位置。 4. **终止条件**:设定最大迭代次数或满足特定精度条件后停止算法。 在Python代码中,可能会使用numpy库来处理矩阵运算,matplotlib库用于可视化过程,以及random库来实现随机数生成。FOA的Python实现通常包含以下核心部分: - `initialize_population()`: 初始化果蝇群体。 - `fitness_function()`: 定义目标函数,用于评估果蝇位置的质量。 - `update_position()`: 实现随机飞行和嗅觉引导的更新规则。 - `main_loop()`: 迭代过程,包含适应度计算和位置更新。 - `plot_results()`: 可视化结果,展示果蝇群体的优化过程。 在软件/插件领域,FOA可能被集成到优化工具或框架中,允许用户解决特定问题时选择不同的优化算法。例如,它可能作为模块在科学计算库如Scipy或Optuna中出现,或者作为插件在数据分析平台如Apache Spark中提供。 果蝇优化算法是一种强大的优化工具,尤其适合解决多模态、非线性优化问题。结合Python编程语言,我们可以方便地实现和应用这种算法,解决实际问题,并通过可视化的手段理解其优化过程。同时,理解并掌握这类智能优化算法对于提升IT专业人士在问题求解和数据分析能力方面具有重要意义。
2024-09-30 00:53:53 14KB python
1
在使用Python编写的程序中,我会使用爬虫技术从百度图片网站上抓取图片并将其下载到本地存储设备上。这个过程涉及到网络请求、数据解析和文件保存等多个步骤。通过使用适当的库和函数,我可以编写出一个功能强大且高效的爬虫程序,以便能够方便地获取并保存百度图片。
2024-09-15 20:07:41 1.77MB python
1
python烟花代码 用python代码放烟花源码python.zip用python代码放烟花源码python.zip用python代码放烟花源码python.zip用python代码放烟花源码python.zip用python代码放烟花源码python.zip用python代码放烟花源码python.zip用python代码放烟花源码python.zip用python代码放烟花源码python.zip用python代码放烟花源码python.zip用python代码放烟花源码python.zip用python代码放烟花源码python.zip用python代码放烟花源码python.zip用python代码放烟花源码python.zip用python代码放烟花源码python.zip用python代码放烟花源码python.zip用python代码放烟花源码python.zip用python代码放烟花源码python.zip
2024-08-29 14:08:47 15.46MB python
1
1.版本:matlab2014/2019a/2021a,内含运行结果,不会运行可私信 2.领域:智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、路径规划、无人机等多种领域的Matlab仿真,更多内容可点击博主头像 3.内容:标题所示,对于介绍可点击主页搜索博客 4.适合人群:本科,硕士等教研学习使用 5.博客介绍:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可si信 %% 开发者:Matlab科研助手 %% 更多咨询关注天天Matlab微信公众号 ### 团队长期从事下列领域算法的研究和改进: ### 1 智能优化算法及应用 **1.1 改进智能优化算法方面(单目标和多目标)** **1.2 生产调度方面** 1.2.1 装配线调度研究 1.2.2 车间调度研究 1.2.3 生产线平衡研究 1.2.4 水库梯度调度研究 **1.3 路径规划方面** 1.3.1 旅行商问题研究(TSP、TSPTW) 1.3.2 各类车辆路径规划问题研究(vrp、VRPTW、CVRP) 1.3.3 机器人路径规划问题研究 1.3.4 无人机三维路径规划问题研究 1.3.5 多式联运问题研究 1.3.6 无人机结合车辆路径配送 **1.4 三维装箱求解** **1.5 物流选址研究** 1.5.1 背包问题 1.5.2 物流选址 1.5.4 货位优化 ##### 1.6 电力系统优化研究 1.6.1 微电网优化 1.6.2 配电网系统优化 1.6.3 配电网重构 1.6.4 有序充电 1.6.5 储能双层优化调度 1.6.6 储能优化配置 ### 2 神经网络回归预测、时序预测、分类清单 **2.1 bp预测和分类** **2.2 lssvm预测和分类** **2.3 svm预测和分类** **2.4 cnn预测和分类** ##### 2.5 ELM预测和分类 ##### 2.6 KELM预测和分类 **2.7 ELMAN预测和分类** ##### 2.8 LSTM预测和分类 **2.9 RBF预测和分类** ##### 2.10 DBN预测和分类 ##### 2.11 FNN预测 ##### 2.12 DELM预测和分类 ##### 2.13 BIlstm预测和分类 ##### 2.14 宽度学习预测和分类 ##### 2.15 模糊小波神经网络预测和分类 ##### 2.16 GRU预测和分类 ### 3 图像处理算法 **3.1 图像识别** 3.1.1 车牌、交通标志识别(新能源、国内外、复杂环境下车牌) 3.1.2 发票、身份证、银行卡识别 3.1.3 人脸类别和表情识别 3.1.4 打靶识别 3.1.5 字符识别(字母、数字、手写体、汉字、验证码) 3.1.6 病灶识别 3.1.7 花朵、药材、水果蔬菜识别 3.1.8 指纹、手势、虹膜识别 3.1.9 路面状态和裂缝识别 3.1.10 行为识别 3.1.11 万用表和表盘识别 3.1.12 人民币识别 3.1.13 答题卡识别 **3.2 图像分割** **3.3 图像检测** 3.3.1 显著性检测 3.3.2 缺陷检测 3.3.3 疲劳检测 3.3.4 病害检测 3.3.5 火灾检测 3.3.6 行人检测 3.3.7 水果分级 **3.4 图像隐藏** **3.5 图像去噪** **3.6 图像融合** **3.7 图像配准** **3.8 图像增强** **3.9 图像压缩** ##### 3.10 图像重建 ### 4 信号处理算法 **4.1 信号识别** **4.2 信号检测** **4.3 信号嵌入和提取** **4.4 信号去噪** ##### 4.5 故障诊断 ##### 4.6 脑电信号 ##### 4.7 心电信号 ##### 4.8 肌电信号 ### 5 元胞自动机仿真 **5.1 模拟交通流** **5.2 模拟人群疏散** **5.3 模拟病毒扩散** **5.4 模拟晶体生长** ### 6 无线传感器网络 ##### 6.1 无线传感器定位 ##### 6.2 无线传感器覆盖优化 ##### 6.3 室内定位 ##### 6.4 无线传感器通信及优化 ##### 6.5 无人机通信中继优化 #####
2024-08-19 16:57:32 25.24MB matlab
1
VOC目前处于中断状态 BeeWare项目已不再使用VOC进行Android开发。 现在,我们使用来提供Android支持。 我们仍然相信字节码编译方法具有价值。 但是,我们不将任何BeeWare资源用于VOC开发,并且我们目前不鼓励其他人为VOC做出贡献。 如果您仍然对使用VOC感兴趣,请。 挥发性有机物 一个将Python代码转换为Java字节码的编译器。 这是实验代码。 如果破裂,您将保留所有闪亮的碎片。 它能做什么: 提供一个API,可让您以编程方式创建Java类文件。 将Python 3.4源文件编译为Java类文件,使您能够在JVM(包括Android的VM)上运行Python代码。 它不是完全兼容的Python 3.4实现-仍然需要实现一些语言功能(一些内置函数),并且只有一个基本的标准库实现。 但是,可以转换简单的Python程序,甚至编写简单的Androi
2024-07-25 15:34:17 4.85MB Python
1