反激变换器设计笔记doc,开关电源的设计是一份非常耗时费力的苦差事,需要不断地修正多个设计变量,直到性能达到设计目标为止。本文step-by-step 介绍反激变换器的设计步骤,并以一个6.5W 隔离双路输出的反激变换器设计为例,主控芯片采用NCP1015。 反激变换器设计是开关电源设计中的重要环节,尤其在1W至60W的低功率隔离电源应用中,反激变换器因其简洁、稳定、成本效益高而被广泛采用。设计过程涉及到多个步骤和参数的调整,以满足特定的需求。 我们需要初始化系统参数。这包括输入电压范围,如90~265VAC,电网频率,如50Hz,以及输出功率和效率。例如,一个6.5W的隔离双路输出电源,主路输出5V/1A,辅路输出15V/0.1A,预估效率为0.8。根据输出功率比例,可以定义输出功率分配比KL1和KL2。 接着,确定输入电容Cbulk的值。Cbulk的大小通常与输入功率成正比,宽电压输入时取2~3μF/W,窄电压输入时取1μF/W。例如,对于6.5W的电源,选取19.7μF的电容,实际设计中可能会用到15μF+4.7μF的两个400V高压电解电容并联。 下一步是确定最大占空比Dmax。反激变换器有两种主要工作模式:电感电流连续模式(CCM)和电感电流断续模式(DCM)。CCM模式适合低压大电流输出,而DCM模式适用于高压小电流输出。在设计中,通常选择在CCM和DCM模式临界点,即BCM模式,输入电压最低和满载条件下进行,简化设计过程。最大占空比Dmax决定了输出电压增益和其他关键参数,如反射电压Vor,次级整流二极管的电压VD,以及MOS管的电压Vdsmax。 设计过程中,还需要考虑MOS管的导通损耗和次级输出电容的电流应力。在保证MOS管安全裕量的前提下,适当降低Dmax可以减少MOS管应力,但可能增加次级整流管的电压应力。这需要在两者之间找到平衡。 反激变换器的设计还包括变压器设计、反馈电路设计、保护机制设定等。变压器的磁芯选择、线圈匝数比以及漏感的计算都直接影响转换效率和稳定性。反馈电路用来维持输出电压的恒定,而保护机制则防止过压、过流等情况发生,确保设备安全运行。 反激变换器设计涉及众多细节,每个步骤都需要精确计算和优化。主控芯片,如NCP1015,提供了集成的控制和保护功能,简化了设计流程,但理解其工作原理和应用是至关重要的。设计者需要对开关电源理论有深入理解,才能成功设计出高效、可靠的反激变换器。
2025-05-08 19:48:06 1.36MB 开关电源
1
双向BUCK BOOST电路仿真:基于VDCM控制与电压电流双闭环控制的直流变换器惯性与阻尼特性研究,基于虚拟直流电机控制的双向BUCK BOOST电路仿真:增强直流微电网惯性阻尼与电压电流稳定性分析,双向buck boost电路仿真(VDCM控制 电压电流双闭环控制) 利用了传统电机的阻尼和旋转惯量以及励磁暂态特性,因此在负载功率变化时,输出电压更容易受到影响。 随着交流同步机在交流微电网中的逐渐应用,其思想也被用于dc dc变器中,实现了VDCM控制,从而增加了直流微电网的惯性和阻尼。 该仿真应用双向BUCK BOOST电路,采用直流电机(VDCM)控制策略,与传统pi对比提升了直流变器惯性阻尼特性。 可以看到负载输出的电压电流稳定 2018b版本及以上 ,双向buck_boost电路仿真; VDCM控制; 电压电流双闭环控制; 直流微电网; 惯性和阻尼; 2018b版本以上,基于VDCM控制的双向BUCK BOOST电路仿真:增强惯性与阻尼特性的DC微电网应用
2025-05-08 07:59:28 201KB istio
1
在自动驾驶技术中,坐标变换和图像处理是至关重要的环节,它们为车辆提供了对周围环境的精确理解。本项目中,通过使用MATLAB进行坐标变换,将来自不同传感器(如相机和毫米波雷达)的数据整合成统一的鸟瞰图,从而实现更有效的路径规划和障碍物检测。 我们来了解一下坐标变换的概念。在自动驾驶系统中,存在多种坐标系,例如相机坐标系、毫米波雷达坐标系、车辆坐标系和全局地图坐标系等。这些坐标系之间的转换对于融合不同传感器的信息至关重要。MATLAB 提供了一系列强大的数学工具,如 `transformPoint` 和 `geotrans` 函数,用于在不同坐标系之间进行平移、旋转和缩放操作,确保数据的一致性和准确性。 图像处理在该过程中也扮演了重要角色。相机是自动驾驶汽车获取环境视觉信息的主要方式,但原始图像数据需要经过预处理才能转换为有用的信息。描述中提到的“鸟瞰图”是一种将三维空间信息投影到二维平面的技术,它可以帮助车辆获得广阔的视野,识别出道路上的障碍物和车道线。这个过程通常包括图像校正、色彩增强和透视变换等步骤,其中透视变换是将图像从正常视角转换为顶部视角的关键,可以使用MATLAB的 `imtransform` 函数来实现。 深度学习在这个领域也有着广泛的应用。它可以用来训练模型自动检测图像中的特定对象,如行人、车辆或其他道路标志。这些深度学习模型,如卷积神经网络(CNN),可以从大量的标注数据中学习特征,并在实时运行时快速准确地识别目标。在MATLAB中,可以使用 `deepLearningToolbox` 来构建、训练和部署这样的模型。 至于标签“matlab坐标变换”,这表明项目着重于利用MATLAB的函数来完成坐标变换任务。MATLAB提供了丰富的数学库,使得用户能够方便地进行几何变换,包括旋转、平移和缩放,这对于处理不同传感器的坐标系至关重要。而“图像”标签则意味着图像处理和分析是项目的核心部分,这涉及到图像预处理、特征提取和目标检测等多个方面。 这个项目展示了如何综合运用MATLAB的坐标变换工具和图像处理技术,结合深度学习模型,来解决自动驾驶领域的关键问题。通过将多传感器数据整合到统一的鸟瞰图中,可以提高系统的感知能力和决策效率,进一步推动自动驾驶技术的发展。
2025-05-07 10:46:02 1.02MB matlab坐标变换 深度学习
1
"LLC谐振变换器多种控制策略的闭环仿真研究:变频PFM控制、双环PFM电压电流控制、PWM占空比控制、Burst间歇控制及轻载调节优化、自抗扰ADRC与PI动态响应对比","LLC谐振变换器多种控制策略的闭环仿真研究:包括变频PFM控制、PFM电压电流双环控制、PWM占空比控制、Burst间歇控制及轻载调节优化,与ADRC自抗扰控制相比PI动态响应更快的Matlab Simulink仿真分析",LLC谐振变器常用控制的闭环仿真。 1. 变频控制PFM 2. PFM电压电流双环控制 3. PWM控制,占空比控制 4. Burst控制,间歇控制,着重于轻载调节 5. ADRC,自抗扰控制,相比PI动态响应更快 运行环境为matlab simulink ,LLC谐振变换器; 闭环仿真; 变频控制PFM; PFM电压电流双环控制; PWM控制; 占空比控制; Burst控制; 轻载调节; ADRC; 自抗扰控制; Matlab Simulink。,"LLC谐振变换器:多种控制策略的闭环仿真比较研究"
2025-05-07 02:01:50 612KB kind
1
离散正弦变换(Discrete Sine Transform, DST)是一种在数字信号处理和图像处理领域广泛应用的数学工具,尤其在频域分析中占有重要地位。DST与更广为人知的离散傅立叶变换(DFT)不同,它专注于实数序列的频率分析,而不需要复数运算。DSTMTX是MATLAB中用于生成离散正弦变换矩阵的函数,它能够帮助用户执行DST操作。 离散正弦变换的主要特点包括以下几点: 1. **实数计算**:与DFT不同,DST仅处理实数序列,并且其输出也是实数,这在处理实际物理信号时非常有用,因为它避免了复数运算的复杂性。 2. **对称性**:DST的频谱具有对称性,这意味着如果输入序列是偶对称或奇对称的,其频谱将具有相应的对称性。这种特性有助于解析信号的性质。 3. **类型**:DST有多种类型,常见的有DST-I到DST-VIII。MATLAB中的`dstmtx`函数可能实现的是其中的一种或几种类型。每种类型有不同的定义和性质,但都用于将时间域数据转换到频域。 4. **效率**:DST可以通过快速算法进行计算,如分治法或蝶形运算,这使得在处理大数据集时非常高效。 5. **应用**:DST在音频编码、图像压缩、滤波器设计以及信号去噪等领域都有应用。例如,在音频处理中,DST可以用于提取音频信号的频率成分;在图像处理中,它可以用于图像的频域分析和压缩。 MATLAB的`dstmtx`函数可能是用于创建DST矩阵的工具,该矩阵可以用于直接对数据进行变换,或者构建DST相关的滤波器。`.mltbx`文件是MATLAB的工具箱文件,可能包含`dstmtx`函数和其他相关辅助函数或示例。`.zip`文件则可能是一个归档文件,包含了源代码、文档或其他资源,用户可以解压后查看或导入到MATLAB环境中。 在使用`dstmtx`函数前,需要了解其参数和返回值的详细信息。通常,该函数会接受一个输入向量,然后返回一个矩阵,其中的每一列对应于输入向量的DST结果。为了深入理解并有效利用这个函数,建议阅读MATLAB的帮助文档或源代码,以便掌握其具体用法和内部实现。同时,了解DST的理论基础对于正确解释和分析结果至关重要。
2025-05-06 21:52:36 7KB matlab
1
自抗扰控制技术:Boost与Buck变换器的Matlab Simulink仿真与C语言代码实现,"自抗扰控制技术在Boost与Buck变换器中的应用与仿真分析",自抗扰控制Matlab Simulink,ADRC仿真与技术文档。 有以下文件 1,Boost自抗扰仿真,与自抗扰基本原理ppt,加最基本的Boost开环仿真与闭环仿真,pi控制参数,与自抗扰对比。 2,Boost自抗扰2阶ADRC,仿真文件。 二阶自抗扰ADRC传递函数推导,与二阶离散化文件,通过自抗扰对一阶传递函数进行控制的文件。 3,Buck变器基本仿真,从开环到闭环一步一步搭建,到pi参数设计与伯德图程序代码,详细的技术文档,控制量匹配情况,扰动公式都是用mathtype敲好的。 4,二阶Buck变器自抗扰控制仿真,与详细技术文档,负载跳变稳定性更好,闭环带宽测试。 5,自抗扰传递函数推倒公式与Matlab 6,从pid到二阶adrc自抗扰控制器,C语言代码一阶adrc,二阶adrc离散化,详细的介绍文档。 参考文献加LLC,等dcdc变器自抗扰仿真。 仿真是自己一步一步搭建的,每一步仿真都有,技术文档和方案公式都用w
2025-05-06 21:19:01 4.16MB
1
模块化多电平变换器MMC仿真研究:NLM与CPS-PWM调制策略的实践与对比,模块化多电平变换器(MMC)交流直流仿真研究与实现:NLM与CPS-PWM调制策略及环流抑制技术详解,模块化多电平变器MMC两种调制策略实现(交流3000V-直流5000V整流)仿真,单桥臂二十子模块,分别采用最近电平逼近NLM与载波移相调制CPS-PWM实现,仿真中使用环流抑制,NLM中采用快速排序,两个仿真动稳态性能良好,附带仿真介绍文档,详细讲述仿真搭建过程,并附带参考文献与原理出处,内容详实 ,核心关键词: 模块化多电平变换器(MMC); 交流3000V-直流5000V整流; 调制策略; 最近电平逼近NLM; 载波移相调制CPS-PWM; 仿真; 环流抑制; 快速排序; 仿真搭建过程; 仿真介绍文档; 参考文献; 原理出处 用分号分隔:模块化多电平变换器MMC;交流整流仿真;调制策略实现;最近电平逼近NLM;载波移相调制CPS-PWM;环流抑制;快速排序;仿真搭建过程;仿真介绍文档;参考文献;原理出处; 注:由于没有具体分析要求,所以直接给出关键词,没有进行进一步的分析或解释。,模块化多
2025-05-06 19:58:05 1.05MB css3
1
内容概要:本文详细介绍了全相位快速傅里叶变换(apFFT)的原理和MATLAB实现方法。apFFT相比传统的快速傅里叶变换(FFT),能够有效减少频谱泄漏,提高相位和幅值测量的准确性。文中通过多个实例展示了apFFT在处理非整周期采样信号时的优势,特别是在电力系统同步测量、机械故障诊断等领域的应用。同时,文章强调了窗函数选择的重要性,并提供了具体的代码实现和优化建议。 适合人群:从事信号处理、电力系统分析、机械故障诊断等相关领域的工程师和技术人员。 使用场景及目标:适用于需要高精度频谱分析的场合,如电力系统的谐波分析、机械振动信号处理等。主要目标是提高相位和幅值测量的准确性,解决传统FFT存在的频谱泄漏问题。 其他说明:尽管apFFT的实现相对复杂,计算量较大,但在现代硬件环境下,其性能完全可以满足实际需求。建议读者通过仿真信号进行练习,深入理解循环移位和平滑窗函数的作用。
2025-05-06 11:59:35 539KB
1
储能蓄电池与Buck-Boost双向DC-DC变换器Simulink仿真模型研究:放电电压电流双闭环控制与充电单电流环策略,储能蓄电池与Buck-Boost双向DC-DC变换器Simulink仿真模型研究:放电电压电流双闭环控制与充电单电流环策略,储能蓄电池+buckboost双向DC-DC变器Simulink仿真模型 放电电压电流双闭环 充电单电流环 ,储能蓄电池; buckboost; 双向DC-DC变换器; Simulink仿真模型; 放电电压电流双闭环; 充电单电流环。,基于储能蓄电池的Buck-Boost双向DC-DC变换器Simulink仿真模型研究
2025-05-05 14:02:21 696KB 数据仓库
1
内容概要:本文深入探讨了双有源桥(DAB)变换器在PSIM/Simulink环境下的闭环控制仿真,特别聚焦于SPS(单相移)、DPS(双相移)和TPS(三相移)三种控制策略。文章详细介绍了SPS控制的基本原理及其在负载阶跃响应中的表现,展示了如何通过调节移相角来实现功率传输和控制。同时,文中提供了具体的Matlab/Simulink代码示例,解释了关键参数的选择和调整方法,如PI控制器的参数设置、死区时间和移相角限幅等。此外,还简要提到了DPS和TPS控制的特点及其应用场景。 适合人群:从事电力电子领域的研究人员和技术人员,尤其是对DAB变换器及其控制策略感兴趣的读者。 使用场景及目标:①理解DAB变换器的工作原理和不同控制策略的优缺点;②掌握SPS控制下的负载阶跃响应仿真方法;③学习如何优化PI控制器参数和其他相关参数以提高系统的稳定性和响应速度。 其他说明:文章不仅提供了理论分析,还包括了大量的代码片段和仿真结果,帮助读者更好地理解和实践DAB变换器的闭环控制仿真。
2025-05-03 22:17:46 533KB
1