FluidImporter是一款专为sketchup用户制作的模型导入插件,使用这款插件可以将各种模型文件导入到草图大师中进行编辑,支持.obj、.fbx、.stl、.ply、.3ds、.dae、.ase等格式,而且导入后模型的布局和格式不会改变,包括原来的材质、贴图、颜色和网格面等信息,欢迎有需要的朋友们前来下载使用。 支持文件格式 包括 .obj, .fbx, .stl, .ply, .x
2024-08-21 10:07:35 16.97MB 图形图像
1
图像处理领域,预测编码是一种常见的数据压缩技术,主要用于减少图像数据中的冗余信息,以达到高效存储和传输的目的。本资源"图像处理的预测编码源代码"是基于Matlab实现的一个实例,非常适合初学者理解和掌握预测编码的基本原理。 Matlab是一种强大的数值计算和可视化工具,特别适合进行图像处理和信号处理相关的实验与开发。在这个压缩包中,包含了一个名为"eye"的文件,这通常指的是Matlab的内置函数`eye()`生成的单位矩阵。在图像处理的上下文中,单位矩阵可能被用作基础参照,用于构建预测模型。 预测编码的核心思想是利用当前像素值与其相邻像素值的关系来进行预测,预测误差则被编码和存储。误差通常使用无损或有损编码方法,如行程编码、霍夫曼编码或熵编码等。在Matlab中,可以通过自定义函数或者内置的图像处理工具箱来实现这些操作。 预测编码主要包括线性预测编码(LPC)、差分脉冲编码调制(DPCM)和自适应差分脉冲编码调制(ADPCM)等方法。线性预测编码通过建立像素值的线性预测模型,然后编码预测误差;DPCM则是根据前一时刻的预测误差来预测当前时刻的误差;ADPCM则进一步引入了自适应算法,使预测系数随时间自适应调整,提高预测精度。 在Matlab中实现预测编码,一般会涉及以下步骤: 1. 读取图像:使用`imread()`函数读取图像数据。 2. 预处理:可能需要将图像转换为灰度,使用`rgb2gray()`函数。 3. 预测:根据预测模型(如前一像素、平均值或线性组合)计算当前像素的预测值。 4. 计算误差:得到当前像素实际值与预测值的差,即误差。 5. 量化:将误差转换为有限数量的离散级别,可使用`quantize()`函数。 6. 编码:对量化后的误差进行编码,可以选择不同的编码方法。 7. 存储:将编码后的结果保存到文件。 8. 解码和重构:在接收端解码并反量化误差,再结合预测值重构图像。 通过分析和理解这个"eye"文件,你可以了解到如何在Matlab中搭建预测编码的框架,以及如何利用单位矩阵作为基础进行预测。对于进一步的学习,可以尝试对其他图像应用这些代码,或者修改预测模型和编码策略,以探索其对压缩效果的影响。 预测编码是图像压缩技术的重要组成部分,Matlab提供的强大工具和丰富的库函数使其成为学习和实践这一技术的理想平台。通过深入研究这个源代码,你不仅可以掌握预测编码的基本原理,还能提升Matlab编程技能,为后续的图像处理和信号处理项目打下坚实的基础。
2024-08-19 15:47:43 6KB Matlab
1
图像增强是图像处理的一个重要分支, 它对图像整体或局部特征能有效地改善;直方图是图像处理中最重要的基本概念之一,它能有效地用于图像增强。本文主要探讨了直方图的理论基础,直方图均衡化的概念及理论,同时用MATLAB语言加以实现, 给出标准的数字图像在各种处理前与处理后的对照图像及直方图。实验结果表明, 用直方图均衡化的算法, 能有效改善灰度图像的对比度差和灰度动态范围,使处理后的图像视觉效果得以改善。 图像增强是一种旨在优化图像质量和突出关键特征的技术,它在图像处理领域扮演着至关重要的角色。直方图均衡化是图像增强的一种有效手段,尤其对于改善灰度图像的对比度和扩展其动态范围有着显著的效果。 直方图是描述图像中不同灰度值出现频率的图形表示,它为分析图像的亮度分布提供了直观的工具。直方图均衡化是通过重新分配图像的灰度级来扩大对比度的过程。在图像中,如果大部分像素集中在某个灰度范围内,那么图像可能看起来暗淡或缺乏对比度。直方图均衡化通过创建一个新的映射函数,将原始图像的灰度分布转换为更均匀的分布,从而提高了图像的整体对比度。 MATLAB作为一种强大的数值计算和可视化工具,常被用来实现图像处理算法,包括直方图均衡化。在MATLAB中,可以使用`histeq`函数来执行直方图均衡化。该函数首先计算图像的累积分布函数(CDF),然后通过对每个灰度值应用逆CDF映射,将原始图像的灰度分布转换为新的分布,这样就实现了直方图的均衡化。 在进行直方图均衡化时,通常会比较处理前后的图像和直方图,以评估算法的效果。实验结果通常显示,经过直方图均衡化的图像具有更高的对比度,视觉效果更佳,这对于人眼识别细节或机器识别任务都十分有利。此外,直方图均衡化还可以改善因光照不均、曝光不足或过度而导致的图像质量问题。 图像增强不仅限于直方图均衡化,还包括空间域和频域增强等多种方法。空间域增强直接操作图像像素,例如通过调整亮度、对比度、锐化等来改变图像特征。频域增强则涉及图像的傅立叶变换,通过修改频谱来改变图像的特性。这两种方法各有优势,适用于不同的场景和需求。 图像增强是提升图像质量、突出关键信息的关键步骤,而直方图均衡化作为其中的有效技术,对于改善灰度图像的视觉效果尤其有效。在实际应用中,应根据具体的需求和图像特点选择合适的增强方法,以达到最佳的处理效果。无论是用于医学影像分析、遥感图像处理还是计算机视觉任务,图像增强都是必不可少的一环,它能够提升图像的可读性和后续分析的准确性。
2024-08-19 15:13:22 587KB 图像处理
1
输电线路绝缘子红外图像,数据集内含6000多幅绝缘子红外图像,并利用labelimg软件对其进行了标注,标签类别为insulator(绝缘子),标签类型为yolo(txt)格式,有问题加Q:2954644583
2024-08-19 11:09:34 25.22MB 数据集
1
图像处理领域,车牌识别是一项重要的技术,广泛应用于交通监控、智能停车场等系统。MATLAB作为一款强大的数学计算和数据分析工具,提供了丰富的图像处理函数,使得实现车牌识别变得相对简单。本项目是基于MATLAB的车牌识别系统,特别针对蓝色车牌进行设计。下面将详细介绍其中的关键技术和步骤。 1. 图像预处理: 预处理是任何图像识别系统的基础,目的是减少噪声、增强特征并统一图像质量。在这个项目中,可能包括以下步骤: - **灰度化**:将彩色图像转换为灰度图像,简化处理。 - **二值化**:通过阈值分割将图像分为前景(车牌)和背景,便于后续操作。 - **平滑滤波**:使用高斯滤波或中值滤波消除噪声,保持边缘清晰。 - **直方图均衡化**:提高图像对比度,使细节更加明显。 2. 车牌定位: 这一步通常涉及边缘检测和轮廓查找。MATLAB中的Canny算法可以用于检测边缘,而findContours函数则能找出潜在的车牌区域。为了适应不同光照和角度,可能还需要进行倾斜校正,如使用Hough变换检测直线。 3. 色彩分割: 由于蓝色车牌的特性,可以通过色彩空间转换来分离车牌。项目描述中提到,可能使用HSV颜色空间,因为其对光照变化不敏感。设置合适的HSV值范围(如蓝色车牌的HSV值域),筛选出蓝色区域。对于新能源车牌,可能需要调整HSV值域以包含其特有的绿色。 4. 特征提取与模板匹配: 识别出的车牌区域可能还需进一步细化。可以利用边缘检测、直角检测等方法,确认车牌的矩形形状。然后,提取车牌字符的特征,如高度、宽度、间距等,以模板匹配或机器学习算法进行字符识别。 5. 字符识别: 字符识别通常分为两个阶段:特征提取和分类。特征提取可能包括字符轮廓、形状、面积等;分类则可采用支持向量机(SVM)、神经网络等模型进行。MATLAB提供多种机器学习工具箱,方便进行模型训练和测试。 6. 循环处理: 项目描述中提到添加循环,这可能是指对于输入的多张图片,需要重复以上步骤进行车牌识别。循环结构可以确保每张图片都能得到处理,并将结果输出或保存。 7. 性能优化: MATLAB虽然功能强大,但在处理大量图像时速度可能较慢。为了提高效率,可以考虑使用MATLAB的并行计算工具箱,或者将部分关键代码用C/C++重写,再通过MATLAB的MEX接口调用。 通过上述步骤,基于MATLAB的车牌识别系统能有效识别蓝色车牌,并具备一定的扩展性以适应新能源车牌。然而,实际应用中可能还需要不断调整参数、优化算法,以应对各种复杂环境和条件。
2024-08-16 19:18:13 5.27MB MATLAB 图像处理 车牌识别
1
配套文章:https://blog.csdn.net/qq_36584673/article/details/136861864 文件说明: benchmark_results:保存不同倍数下测试集的测试结果 data:存放数据集的文件夹,包含训练集、测试集、自己的图像/视频 epochs:保存训练过程中每个epoch的模型文件 statistics:存放训练和测试的评估指标结果 training_results:存放每一轮验证集的超分结果对比,每张图像5行3列展示 data_utils.py:数据预处理和制作数据集 demo.py:任意图像展示GT、Bicubic、SRGAN可视化对比结果 draw_evaluation.py:绘制Epoch与Loss、PSNR、SSIM关系的曲线图 loss.py:损失函数 model.py:网络结构 test_benchmark.py:生成benchmark测试集结果 test_image.py:生成任意单张图像用SRGAN超分的结果 test_video.py:生成SRGAN视频超分的结果 train.py:训练SRGAN 使用方法见文章。
2024-08-16 14:23:17 231.09MB pytorch 超分辨率 超分辨率重建 python
1
易语言是一种专为初学者设计的编程语言,其特点在于语法简单、易学易用,因此“易语言编写抽奖程序”这个主题对于想要学习编程,尤其是易语言编程的人来说,是个很好的实践项目。抽奖程序在日常生活中广泛应用,如商场促销、活动策划等,通过程序化实现可以增加公平性和趣味性。 在易语言中编写抽奖程序,首先我们需要理解以下几个核心知识点: 1. **事件驱动编程**:易语言采用事件驱动模型,即程序响应用户操作或其他外部事件来执行特定任务。例如,点击“开始抽奖”按钮会触发一个事件,程序需要根据这个事件进行后续的抽奖逻辑。 2. **用户界面(UI)设计**:抽奖程序需要有吸引人的界面,包括按钮、文本框、图片等元素。在易语言中,可以通过集成的资源编辑器设计窗口布局和样式。 3. **随机数生成**:抽奖的关键在于随机性,易语言提供了生成随机数的函数,如`随机整数`,用于确定中奖者。需要设定一个合理的范围,比如在所有参与者的编号之间。 4. **数据结构**:程序可能需要存储参与者的信息,可以使用数组或列表等数据结构来保存这些数据。易语言支持动态数组和链表,可以根据实际需求选择。 5. **循环与条件判断**:在抽奖过程中,可能需要通过循环遍历所有参与者,然后根据随机数进行条件判断,找出中奖者。 6. **错误处理**:良好的程序应该考虑到可能出现的问题,如数据输入错误、无参与者等。易语言提供异常处理机制,可以编写错误处理代码来应对这些问题。 7. **图形图像**:标签上提到“图形图像源码”,意味着程序可能包含图形效果,如旋转、动画等,使抽奖过程更生动。易语言提供了图形绘制和动画控制的相关命令。 8. **声音播放**:为了增强用户体验,程序可能还包含声音播放功能,如中奖音效。易语言支持音频播放功能,可以通过相关命令实现。 9. **结果显示**:抽奖结果需要以某种形式展示,可能是弹出对话框、改变界面元素的显示状态,或者在指定位置输出文字。 10. **文件操作**:如果需要保存或读取历史记录,易语言的文件操作命令可以帮助我们将数据写入或读取文件。 在实践中,你可以先设计好UI,然后实现基本的抽奖逻辑,接着添加各种细节功能,如错误处理、图形效果等。通过这样一个项目,不仅可以掌握易语言的基本语法,还能锻炼到编程思维和问题解决能力。同时,这也是一个很好的学习编程的起点,因为它的难度适中,既有挑战性,又不至于让人望而却步。
2024-08-14 11:10:44 1.47MB 图形图像源码
1
二维灰度图像的小波变换和逆变换在计算机视觉与图像处理领域中扮演着重要的角色。小波变换是一种信号分析工具,能够将复杂信号分解为不同尺度和位置的局部特征,对于图像处理而言,这意味着可以对图像进行多分辨率分析,提取不同层次的细节信息。 在C++中实现小波变换,通常会用到一些开源库,如Wavelet Toolbox或OpenCV。这些库提供了丰富的函数和结构,便于开发者进行小波分析。在这个项目中,可能包含的源码文件有以下几个部分: 1. **数据读取与预处理**:使用C++的文件操作函数读取二维灰度图像,将其转换为适当的数组格式。可能使用OpenCV库中的`imread`函数来读取图像,并进行必要的预处理,例如调整图像尺寸、归一化等。 2. **小波基的选择**:小波变换涉及到多种小波基,如Haar小波、Daubechies小波、Symlet小波等。不同的小波基适用于不同的应用需求,选择合适的小波基是关键步骤。在代码中,可能会定义一个类或者结构体来表示特定的小波基函数。 3. **小波变换**:小波变换分为离散小波变换(DWT)和离散二维小波变换(2D-DWT)。2D-DWT对图像的行和列分别进行一维DWT,然后通过卷积或蝶形运算组合结果。这一过程在代码中可能包含两个递归或循环的步骤,分别对应水平和垂直方向的变换。 4. **图像分解**:小波变换后,图像被分解为低频系数(近似图像)和高频系数(细节图像)。这些系数通常存储在不同的数组或矩阵中,便于后续的处理。 5. **逆小波变换**:为了恢复图像,需要进行逆小波变换。这通常涉及到对高频系数的逆操作,以及与低频系数的合并。逆变换的过程与正向变换类似,但步骤相反。 6. **结果输出**:处理完成后,将重构的图像写入文件,通常使用OpenCV的`imwrite`函数。同时,可能还会提供可视化工具,如MATLAB的图像显示功能,以便观察变换前后图像的差异。 7. **编译与运行**:项目可能包含Makefile文件,用于配置编译选项和链接库。用户可以通过执行`make`命令来编译源码,生成可执行程序,然后运行程序来处理指定的图像。 学习这个项目的源码,可以帮助理解小波变换在图像处理中的实际应用,以及如何利用C++实现这些算法。此外,对于深入掌握小波理论、图像处理技术以及C++编程技巧都是非常有价值的。通过实践,开发者可以进一步优化代码性能,适应更复杂的图像处理任务。
2024-08-12 22:52:28 227KB 小波变换 图像处理
1
描述: 这个项目展示了如何将 MNIST160 手写数字图片数据集成功集成到 YOLOv8 图像分类框架中。通过此集成,项目成功地运用了 YOLOv8 的先进算法对手写数字进行快速、准确的识别和分类。MNIST160 数据集,包含160张高质量的手写数字图片,被优化并用于这个先进的图像分类任务,展示了 YOLOv8 在处理实际应用场景中的强大能力。 总结: 整合 MNIST160 数据集与 YOLOv8 的这个项目不仅展示了如何有效地运用最新的图像分类技术,也提供了一个实用的案例,用于探索和优化机器学习在实际应用中的潜能。
2024-08-12 10:16:45 13.21MB 数据集
1
利用VB提供的Active X控件,创建了一个名为PicView控件,实现图像的整幅浏览。
2024-08-11 09:13:26 130KB 自然科学 论文
1