在A/D和D/A转换器、数据采集系统以及各种测量设备中,都需要高精度、高稳定性的基准电压源,并且基准电压源的精度和稳定性决定了整个系统的工作性能。电压基准源主要有基于正向VBE的电压基准、基于齐纳二极管反向击穿特性的电压基准、带隙电压基准等多种实现方式,其中带隙基准电压源具有低温度系数、高电源抑制比、低基准电压等优点,因而得到了广泛的应用。 本文在基于传统带隙电压基准源原理的基础上,采用电流反馈、一级温度补偿等技术,同时在电路中加入启动电路,设计了一个高精度、输出可调的带隙基准电压源,并在SMIC 0.25μm CMOS工艺条件下对电路进行了模拟和仿真。 1 带隙基准电压源工作原理与传统
2025-04-14 14:07:53 195KB 电源技术
1
在短距离无线通信中,无线节点或移动终端通常有低成本、小体积、低功耗的要求,因此无法使用复杂的预失真或补偿电路克服功放的非线性影响,这是无线节点或移动终端在上行链路中难以使用高阶QAM调制的重要原因之一。基于QAM矩形星座的特点,提出了一种K-means聚类的改进算法作为中央基站节点的高阶QAM解调算法。在发送信号受到较严重的功放非线性失真时,所提改进算法解调性能更优,算法复杂度更低。 在短距离无线通信中,高阶QAM(Quadrature Amplitude Modulation)调制由于其高传输效率而被广泛采用,但同时也面临着功率放大器(PA)非线性失真的挑战。由于无线节点和移动终端对成本、体积和功耗的严格限制,无法采用复杂的预失真或补偿电路来应对这一问题。为了解决这一难题,一种针对失真QAM信号的改进K-means聚类算法被提出,特别适用于中央基站节点的高阶QAM解调。 传统的K-means聚类算法主要用于数据挖掘和模式识别,而在通信领域,尤其是用于高阶调制的解调,这一应用并不常见。该改进算法的优势在于,在功放非线性导致QAM星座图严重失真的情况下,可以提供更优的解调性能,同时保持较低的算法复杂度。 在K-means解调过程中,关键步骤包括数据点的聚类和星座编号判决。原始的K-means算法可能因为“两星座一簇”或“一星座两簇”的情况导致误判,而改进算法则通过利用星座图的先验知识,比如矩形星座的结构,来更精确地选择初始聚类中心。对于矩形星座,算法首先估算数据点的分布范围,然后进行非均匀网格划分,结合理想星座图剔除无关点,最后选取最接近数据点的网格点作为初始聚类中心,确保每个星座点对应一个聚类中心,提高了解调的准确性。 具体实施上,算法会接收一组数据点的横纵坐标集合,根据QAM调制的阶数K和矩形星座的行数M进行处理。通过调整非均匀划分系数η,可以适应不同的失真程度,以达到最佳的解调效果。这种改进策略有效地降低了由于功放非线性导致的解调错误率,尤其在面对严重的失真时,解调性能优于常规方法。 该改进的K-means聚类算法为短距离无线通信中的高阶QAM解调提供了一种新的解决方案。它巧妙地利用了通信系统内的先验信息,降低了算法复杂度,同时提高了解调的准确性和鲁棒性,对于无线节点和移动终端的低功耗、低成本需求是一个理想的匹配。随着C-RAN架构的推广,这种算法有望在未来的无线通信系统中发挥重要作用,特别是在那些需要高效能、低功耗解调的场景中。
2025-04-13 21:00:56 577KB
1
matlab图片隐藏代码基于通用VLC映射(GVM)的JPEG比特流大容量无损数据隐藏 一种用于 JPEG 图像的高容量无损数据隐藏方案。 抽象的 JPEG 是最流行的图像格式,在我们的日常生活中被广泛使用。 因此,JPEG 图像的可逆数据隐藏 (RDH) 很重要。 大多数 JPEG 图像的 RDH 方案会在标记的 JPEG 图像中导致显着的失真和大的文件大小增量。 作为RDH的一个特例,无损数据隐藏(LDH)技术可以保持标记图像的视觉质量不下降。 在本文中,提出了一种新的高容量LDH方案。 在 JPEG 比特流中,并非所有可变长度代码 (VLC) 都用于对图像数据进行编码。 通过构建已使用和未使用 VLC 之间的映射,可以通过将已使用 VLC 替换为未使用 VLC 来嵌入秘密数据。 与之前的方案不同,我们的映射策略允许映射集中未使用和已使用的 VLC 的长度不相等。 我们提出了一些关于构建映射关系的基本见解。 实验结果表明,与以前的 RDH 方案相比,使用所提出方案的大多数 JPEG 图像获得更小的文件大小增量。 此外,所提出的方案可以获得高嵌入容量,同时保持标记的JPEG图像不失真
2025-04-11 16:55:38 319KB 系统开源
1
TM1651 是一种带键盘扫描接口的LED(发光二极管显示器)驱动控制专用电路,内部集成有MCU 数字接口、数据锁存器、LED 高压驱动、键盘扫描等电路。本产品性能优良,质量可靠。主要应用于电磁炉、微波炉及小家电产品的显示屏驱动。采用SOP16/DIP16的封装形式。
2025-03-30 14:34:14 781KB
1
引言RFID是一种利用射频通信实现的非接触式自动识别技术,它包括电子标签(tag)和读写器(reader)两个主要部分,附有编码的标签和读写器通过天线进行无接触数据传输,以完成一定距离的自动识别过程。RFID标签天线
2025-03-27 21:34:21 290KB RFID|NFC
1
标题中的“网络游戏-一种基于遗传算法改进的BP神经网络的温室环境预测反馈方法”实际上是一个研究主题,而非直接与网络游戏相关,而是将两种技术——遗传算法(Genetic Algorithm, GA)和反向传播(Backpropagation, BP)神经网络结合,应用于温室环境的预测反馈系统。这种应用旨在提高环境控制的精度,以优化农作物生长条件。 我们来理解遗传算法。遗传算法是一种模拟自然选择和遗传机制的全局搜索优化技术,通过模拟物种进化过程中的优胜劣汰、基因重组和变异等操作,寻找问题的最优解。在本研究中,遗传算法被用来优化BP神经网络的权重和阈值,以提升其预测性能。 BP神经网络是人工神经网络的一种,广泛用于非线性建模和预测任务。它通过反向传播误差信号来调整神经元之间的连接权重,从而逐步减小预测误差。然而,BP网络存在收敛速度慢、易陷入局部最优等问题,这正是遗传算法可以发挥作用的地方。 在温室环境预测中,关键因素包括温度、湿度、光照强度和二氧化碳浓度等。这些参数对植物生长有着显著影响。通过构建一个基于遗传算法改进的BP神经网络模型,可以更准确地预测未来的环境状态,从而提前调整温室的控制系统,如通风、遮阳、灌溉等,以维持理想的生长环境。 研究中可能涉及的具体步骤包括: 1. 数据收集:收集历史温室环境数据作为训练样本。 2. 预处理:对数据进行清洗、标准化,以便输入神经网络。 3. 构建模型:建立BP神经网络结构,并利用遗传算法优化网络参数。 4. 训练与验证:使用训练集对模型进行训练,验证集用于评估模型的泛化能力。 5. 预测反馈:模型预测未来环境状态,反馈到控制系统进行实时调整。 6. 性能评估:通过比较预测结果与实际环境数据的差异,评估模型的预测精度。 这种结合了遗传算法和BP神经网络的方法,不仅可以提高预测的准确性,还可以解决传统BP网络优化困难的问题,对于现代农业的精准化管理具有重要意义。通过这样的智能预测系统,温室种植者可以更有效地利用资源,降低能耗,同时保证作物的高产优质。
2025-03-03 21:07:20 518KB
1
k210视频循迹的一种方法
2024-12-19 14:36:30 1.59MB k210
1
在液晶相控阵中,由于电压量化、边缘效应、液晶器件制造工艺等因素的影响,导致实际的波前相位面与理想的波阵面存在误差。因此,在应用中要依据实际出射相位与理想出射相位的偏差,反复地修正加载电压,对入射激光波前进行相位调制,以此来满足视场域内波束扫描的需要,这也是液晶相控阵波束控制技术研究的关键问题。为解决上述问题,提出了一种波前相位恢复算法。该算法利用三个输出面的幅度信息迭代计算出波前相位分布,相比只用两个输出面幅度信息的相位恢复算法,该算法具有较高的精确度。同时,该算法利用角谱理论处理输出面的光场传播过程,使得所得到的恢复结果更加精确。仿真实验进一步表明,这种算法在精确度、效率上同时具有优势。
2024-12-05 17:33:42 3.43MB 相位恢复 迭代算法
1
Vinifera-监控Github上的内部泄漏 Github监控工具 :robot: 自2019年12月以来,我们一直在生产中使用Vinifera,并帮助我们预防了安全事件。 Vinifera最初是一个内部项目,以确保我们公共捐助的安全,并监控Github上的潜在泄漏。 我们认为,这将有助于其他公司在公共资源(如Github)方面加强他们的安全卫生。 什么是Vinifera? Vinifera允许公司/组织监视公共资产,以查找有关内部代码泄漏和潜在违规的参考。 有时,开发人员可能会偶然泄漏内部代码和凭据。 Vinifera旨在帮助公司在适当的时候发现这些违规行为并对此事件做出响应。 它是如何工作的? Vinifera监视属于该组织的开发人员,监视和扫描公共贡献,以通过查找定义的引用来查找潜在的违规和违反内部/秘密/专有代码的行为。 Vinifera通过同步组织用户来工作。 对于每个用户,所
2024-11-27 17:44:36 295KB github security recon Ruby
1
导读:随着“数据中台”的提出和成功实践,各企业纷纷在“大中台,小前台”的共识下启动了自己的中台化进程,以数据中台、技术中台、业务中台为代表的一系列技术,极大增强了业务的敏捷性,提高了组织效能。同时随着智能技术的发展,AI应用在业务研发中的占比逐渐升高,但AI模型训练的复杂性导致其开发慢、效率低,严重影响了业务的灵活性。针对这种情况,能否基于中台化思想对业务中AI研发工作进行专门支持,提供对智能需求的迅速实现和灵活试错功能,从而提升企业智能创新能力?AI中台的构建和实施又该如何进行?分享大纲:一、AI中台的提出二、AI中台的目标和定义三、AI中台的实施路线四、实例分析-智能投顾机器人为例五、总结
2024-11-24 21:11:28 22.49MB
1