据统计,我国目前百万人口以上的城市中有80%的路段和90%的路口通行能力已经接近极限,特别是北京、上海、深圳等城市,交通拥堵已成为城市问题。不但影响了人的日常生活工作,也严重制约了城市的经济发展和环境状况。所以随着交通拥堵问题的日益严重,能提前预测交通拥堵的程度是具有潜在价值的,这样司机和行人就可以通过预报尽可能地避免交通拥堵带来的不便。
2019-12-21 20:39:57 290KB cs
1
利用Python爬取交通指数,分析得出所有路网平均速度的脉冲图,找出了每天的易发拥堵路段。 脚本包含爬虫程序,分析程序。
2019-12-21 20:21:20 4.19MB Python 交通数据 脉冲图 拥堵分析
1
针对城市道路交通拥堵预警问题,提出了一种基于深度学习的预测模型 。 通过归纳合并交通流参数 、 环境状态 、 时段等基础数据来构建交通流特征向量并确定四种预测状态 。 采用深度学习的自编码网络方法从无 标签数据集中学习获取可表征数据深层特征的隐层参数并生成新特征集 。 应用 Softmax 回归对有标签的新特征 集进行学习生成预测分类器,模型可对交通拥堵状况进行多态预测 。 通过仿真对比分析,预测模型具有较省略 特征学习的预测算法更好的预测性能,平均预测精度可达 85% 。
2019-12-21 18:58:21 181KB 交通拥堵
1