短文本分类是自然语言处理的一个研究热点.为提高文本分类精度和解决文本表示稀疏问题,提出了一种全新的文本表示(N-of-DOC)方法.采用Word2Vec分布式表示一个短语,将其转换成的向量作为卷积神经网络模型的输入,经过卷积层和池化层提取高层特征,输出层接分类器得出分类结果.实验结果表明,与传统机器学习(K近邻,支持向量机,逻辑斯特回归,朴素贝叶斯)相比,提出的方法不仅能解决中文文本向量的维数灾难和稀疏问题,而且在分类精度上也比传统方法提高了4.23%.
1
1.2国内外研究现状 国外自动分类研究开始于1950年代末,H.P.Luhn在这一领域进行了开创性的 研究,他首先将词频统计的思想用于文本分类中。1960年Maron在Journal of ASM 上发表了有关自动分类的第一篇论文“On relevanee,pr。bab¨itic i ndexing and inf。rmation fetnral”。1962年博科(H.Borko)等人提出了利用因子分析法进行 文献的自动分类。其后许多学者在这一领域进行了卓有成效的研究。国外的自动分 类研究大体上可以分为三个阶段:第一阶段(1958年1964年)主要进行自动分类的 可行性研究:第二阶段(1965年一1974年),自动分类的实验研究:第三阶段(1975年一 至今),自动分类的实用化阶段⋯㈩⋯⋯⋯。现已在邮件分类、电子会议、信息 过滤等方面取得了较为广泛的应用,其中较为成功的系统有麻省理工学院(MIT)为 白宫丌发的邮件分类系统、卡内基集团为路透社丌发的construe系统等。 国内自动分类研究起步较晚“¨“,始于20世纪80年代初期。1981年侯汉清对 计算机在文献分类工作中的应用作了探讨,并介绍了国外在计算机管理分类表、计 算机分类检索、计算机自动分类、计算机编制分类表等方面的概况。此后,困内的 研究者在英文文本分类研究的基础上采取相应策略,结合中文文本的特定知识,然 后应用于中文之上,继而形成中文文本自动分类研究体系。到目前为止,我国陆续 研制出一批计算机辅助分类系统和自动分类系统。例如中国科学院、清华大学、北 京大学、北京信息工程学院、上海交通大学、复旦大学、东北大学、山西大学、同 济大学、南京大学、浙江大学以及西安电子科技大学等单位都有相应的研究成果, 也研制出了不少的实验系统。这其中有基于人工智能技术的分类系统,有基于统计 学技术的分类系统,还有基于模糊技术的分类系统,近几年基于统计知识的分类方 法占主流,也不乏有基于规则的分类方法。 国外当前流行的文本分类方法有k近邻法(KNN)”3、决策树”1、朴素贝叶斯(NB) ‘⋯、支持向量机(sVM)‘⋯、神经网络(NNet)Ⅲ”Ⅲ。1、线性最小平方拟合(LLsF)法⋯1、 最大熵模型“⋯、回归模型㈨㈨、遗传算法⋯1等方法。这些方法在英文文本自动分 类上有广泛的研究,而且很多研究表明KNN和SVM是英文文本分类的最好方法。国 外很多研究人员对英文文本分类领域的各个问题都有相当深入的研究,对几种流行 的方法进行了大量的对比研究。Yiming Yang and xin Liu“51对SvM、KNN、LLsF、 Nnet和NB这5种方法进行了专门的比较研究。 国内当前流行的文本分类方法有k近邻法(KNN)”6¨“1、朴素贝叶斯(naive
1
基于卷积神经网络的海上微动目标检测与分类方法
2022-05-04 14:06:33 768KB 综合资源
最大信息熵原理已被成功地应用于各种自然语言处理领域,如机器翻译、语音识别和文本自动分类等,提出了将其应用于互联网异常流量的分类。由于最大信息熵模型利用二值特征函数来表达和处理符号特征,而KDD99数据集中存在多种连续型特征,因此采用基于信息熵的离散化方法对数据集进行预处理,并利用CFS算法选择合适的特征子集,形成训练数据集合。最后利用BLVM算法进行参数估计,得到满足最大熵约束的指数形式的概率模型。通过实验,比较了最大信息熵模型和Naive Bayes、Bayes Net、SVM与C4.5决策树方法之间的
2022-05-03 12:22:14 558KB 工程技术 论文
1
基于深度学习的糖尿病视网膜图像分类方法研究 基于深度学习的糖尿病视网膜图像分类方法研究 基于深度学习的糖尿病视网膜图像分类方法研究 基于深度学习的糖尿病视网膜图像分类方法研究 基于深度学习的糖尿病视网膜图像分类方法研究 基于深度学习的糖尿病视网膜图像分类方法研究 基于深度学习的糖尿病视网膜图像分类方法研究 基于深度学习的糖尿病视网膜图像分类方法研究 基于深度学习的糖尿病视网膜图像分类方法研究 基于深度学习的糖尿病视网膜图像分类方法研究 基于深度学习的糖尿病视网膜图像分类方法研究 基于深度学习的糖尿病视网膜图像分类方法研究 基于深度学习的糖尿病视网膜图像分类方法研究 基于深度学习的糖尿病视网膜图像分类方法研究 基于深度学习的糖尿病视网膜图像分类方法研究 基于深度学习的糖尿病视网膜图像分类方法研究 基于深度学习的糖尿病视网膜图像分类方法研究 基于深度学习的糖尿病视网膜图像分类方法研究 基于深度学习的糖尿病视网膜图像分类方法研究 基于深度学习的糖尿病视网膜图像分类方法研究 基于深度学习的糖尿病视网膜图像分类方法研究 基于深度学习的糖尿病视网膜图像分类
2022-05-01 16:06:29 4.99MB 深度学习 分类 文档资料 人工智能
安全技术-网络信息-循证医学网络文献的分类方法及其应用研究.pdf
2022-05-01 14:00:23 5.9MB 文档资料 安全 网络 分类
人工智能+芯片+分类方法+技术应用
1
深度学习是近几年图像识别领域的一门新兴技术,能够自动学习影像深层次特征 从而进行准确的分类决策,为得到更好的高分辨率遥感影像分类结果带来新的契机
2022-04-18 16:36:47 4.19MB U-net 遥感图像 分类 深度学习
1
上海市城市信息化决策咨询服务系统--管理咨询项目知识分类方法(ppt 51).ppt
2022-04-06 01:01:12 285KB
基于贝叶斯,SVM对文本进行分类,详细介绍了如何进行文本分类,如python+jieba+skelam
2022-03-26 10:29:17 4.81MB 分类 文本
1