【优化求解】人工鱼群求解多目标优化问题matlab源码.md
2021-10-21 20:35:42 13KB 算法 源码
1
针对多目标优化过程中如何根据个人偏好确定各目标权重的问题, 提出一种约束优化方法以获得各目标的最佳权重. 首先, 将目标权重计算问题转化为综合适应度最大方差计算问题; 然后, 将个人偏好转化为最大方差问题不等式约束条件; 最后, 利用遗传算法和梯度投影法求解约束优化问题以获得最佳的目标权重. 在电力机车故障维修策略决策过程中应用该算法计算各部件经济性、安全性等目标权重, 实验结果验证了所提出方法能够获得满足个人偏好的最佳目标权重.
1
设计了一种新的求解均匀分布的Pareto最优解集的多目标进化算法(MOEA),其主要的特点是使用了一种新的个体适应值的计算方式,方法是通过群体中某一个体与群体的最优非劣解集的最小距离来刻画个体的适应值的。算法还结合了遗传算法中的精英策略以及NSGA-Ⅱ中的拥挤距离[12],提高了非劣解向Pareto最优前沿收敛的速度,并且保证了Pareto最优解集的多样性。仿真结果表明,算法不仅能够获得分布良好的Pareto最优前沿,而且能够极大地简化计算,减少了算法的运行时间,其计算复杂度为ο(mn2)(m表示的是目标函数的个数,n是种群的规模)。
1
NSGA2优化算法Matlab求解多目标优化问题,遗传算法优化+帕累托排序,有效地解决了多目标优化问题,算例可行有效。
2021-09-16 16:13:52 646KB NSGA2 matlab 多目标
1
应用粒子群算法求解多目标优化问题 应用粒子群算法求解多目标优化问题 matlab代码 应用粒子群算法求解多目标优化问题 matlab代码
2021-09-11 13:21:07 14KB 粒子群算法  多目标优化
1
水循环算法(WCA)中使用了非支配排序方法。
2021-08-16 21:51:42 7KB matlab
1
将离散空间问题求解的蚁群算法引入连续空间,针对多目标优化问题的特点,提出一种用于求解带有约束条件的多目标函数优化问题的蚁群算法.该方法定义了连续空间中信息量的留存方式和蚂蚁的行走策略,并将信息素交流和基于全局最优经验指导两种寻优方式相结合,用以加速算法收敛和维持群体的多样性.通过3组基准函数来测试算法性能,并与NSGAII算法进行了仿真比较.实验表明该方法搜索效率高,向真实Pareto前沿逼近的效果好,获得的解的散布范围广,是一种求解多目标优化问题的有效方法.
2021-08-09 10:13:01 183KB 多目标 优化问题 蚁群算法
1
基于遗传算法求解多目标优化问题Pareto前沿
2021-06-29 11:02:04 313KB 遗传算法 多目标优化
1
粒子群算法在多目标优化问题中的应用,基于软件MATLAB实现
2021-06-22 19:25:18 57KB 粒子群 多目标优化
1