死区补偿与谐波抑制:基于6次谐波抑制的PIR控制器离散仿真方法研究与实践,基于谐波补偿的死区抑制:高效离散仿真下的PI-R控制器协同设计,死区补偿方法-6次谐波抑制PIR控制器离散仿真 死区补偿常见方法中用梯形波补偿,矩形波补偿死区,需要判断电流向,还需要相对精确知道死区时间。 谐波补偿方法不需要处理上述的问题,简单有效。 包含: (1)1.5延时补偿 (2)带相位补偿的双线性离散化实现R控制 ,死区补偿方法;6次谐波抑制;PIR控制器;离散仿真;梯形波补偿;矩形波补偿;死区时间判断;电流换向;谐波补偿方法,死区补偿与谐波抑制:PIR控制器6次谐波离散仿真方法
2025-08-25 17:47:38 2.35MB rpc
1
内容概要:本文详细介绍了带载流子密度的双温模型及其在MATLAB中的实现。双温模型用于描述电子和晶格温度之间的相互作用,以及带载流子密度随时间的变化。文中探讨了电子晶格温度与电子密度的关系,特别是在飞秒激光源照射下材料的行为。通过MATLAB进行飞秒激光源模拟,观察电子和晶格温度的变化,以及带载流子密度的动态变化。同时,采用有限元法求解涉及的偏微分方程,展示了具体的MATLAB编程实践步骤,包括定义材料参数、建立数学模型、选择数值解法和优化代码性能。 适合人群:从事材料科学研究、物理建模和仿真工作的科研人员和技术爱好者。 使用场景及目标:适用于希望深入了解材料中电子与晶格相互作用机制的研究人员,以及希望通过MATLAB进行相关仿真的技术人员。目标是掌握双温模型的基本原理和应用,提高对材料特性和行为的理解。 其他说明:本文不仅提供了理论背景,还给出了详细的编程实践指导,帮助读者从零开始构建和优化仿真模型。
2025-08-25 17:45:30 1.79MB
1
无线电能传输(WPT)的LCL-S拓扑及其在MATLAB/Simulink环境下的仿真模型。LCL-S拓扑由两电平H桥逆变器、LCL-S串联谐振和不可控整流结构组成,适用于高频能量传输并具有良好阻抗匹配特性。文中重点探讨了三种控制方法——滑模控制、移相控制和PI控制,并对其仿真效果进行了对比分析。滑模控制通过实时调整逆变器输出电压确保系统最优工作点;移相控制则通过调整相位差优化能量传输;PI控制利用比例和积分环节保持系统稳定。最终,通过对比实验验证了各控制方法在不同工况下的性能差异。 适合人群:从事无线电能传输研究的技术人员、高校师生以及对电力电子控制系统感兴趣的工程技术人员。 使用场景及目标:①理解和掌握LCL-S拓扑的工作原理及其在无线电能传输中的优势;②评估滑模控制、移相控制和PI控制在LCL-S拓扑中的应用效果,为实际项目选型提供依据。 其他说明:附带的文章有助于加深对仿真实验的理解,建议结合理论与实操进行学习。
2025-08-25 17:39:46 492KB
1
利用Comsol进行Mie散射多极子分解仿真的方法和技术细节,涵盖单个散射体和超表面周期性结构的多极子分解。文中通过具体案例展示了如何计算吸收截面、散射截面和消光截面,并提供了MATLAB和Python代码片段用于模型创建和后处理。特别强调了多极子分解在不同波长范围内的贡献变化以及在生物传感领域的潜在应用。此外,还讨论了FDTD方法在处理更大尺度结构时的优势和注意事项。 适合人群:光学仿真工程师、物理学家、材料科学家、从事纳米技术和光子学研究的专业人士。 使用场景及目标:①掌握Comsol中Mie散射多极子分解的具体操作步骤;②理解多极子分解在不同结构和波长下的表现;③提高对复杂光学现象如Fano共振的理解;④为发表高质量科研论文提供技术支持。 其他说明:文章不仅提供了理论指导,还包括实用的操作技巧和常见错误提示,帮助读者避免仿真过程中可能出现的问题。
2025-08-25 16:04:50 2.49MB
1
基于FPGA的数据同步采集处理框架,涵盖了四个主要模块:ADC7606数据采集模块、多通道数据处理模块、DDR3缓存模块和SRIO通信模块。每个模块都配有详细的Verilog代码片段和C代码示例,解释了具体的工作原理和技术细节。例如,ADC7606的数据采集需要精确的SPI时序控制,DDR3缓存模块则强调突发传输的稳定性,SRIO通信模块关注高速数据流的正确组装,多通道数据处理部分解决了跨时钟域的问题。此外,还提供了多个仿真文件和调试建议,帮助学习者更好地理解和优化系统性能。 适合人群:具备FPGA基础知识的研发人员,尤其是对数据采集和处理感兴趣的硬件工程师。 使用场景及目标:适用于需要构建高效数据采集系统的项目,目标是掌握FPGA平台下复杂数据处理流程的设计与实现方法,确保各模块之间的无缝协作,提高系统的可靠性和性能。 其他说明:建议从仿真文件入手,逐步调试每个子模块,最终进行联合调试。遇到问题时可以利用SignalTap等工具抓取关键信号,确保跨时钟域同步的准确性。
2025-08-25 15:34:36 1.02MB FPGA DDR3 Verilog
1
"超表面与超材料:CST仿真设计、材料选择与代码实现全解析",CST仿真 超表面 超表面,超材料 超表面CST设计仿真 超透镜(偏移聚焦,多点聚焦),涡旋波束,异常折射,透射反射编码分束,偏折,涡旋(偏折,分束,叠加),吸波器,极化转,电磁诱导透明,非对称传输,RCS等 材料:二氧化钒,石墨烯,狄拉克半金属钛酸锶,GST等 全套资料,录屏,案例等 聚焦代码,涡旋代码,聚焦透镜代码, CST-Matlab联合仿真代码,纯度计算代码 ,核心关键词: 1. 超表面; 超材料 2. CST仿真 3. 透射反射编码分束 4. 涡旋波束 5. 二氧化钒; 石墨烯; 狄拉克半金属钛酸锶 6. 聚焦代码; 联合仿真代码 7. 材料属性(纯度计算) 这些关键词一行中以分号隔开: 超表面;超材料;CST仿真;透射反射编码分束;涡旋波束;二氧化钒;石墨烯;狄拉克半金属钛酸锶;聚焦代码;联合仿真代码;材料属性(纯度计算) 希望符合您的要求。,《CST仿真与超表面技术:聚焦透镜与涡旋波束的全套资料与代码详解》
2025-08-25 15:30:53 757KB 数据仓库
1
EBF仿真器驱动 EFLAG-HP-EMU-vd50.msi
2025-08-25 14:51:09 3.52MB EBF仿真驱动
1
《Codesys 运动控制电子齿轮案例包详解》 Codesys 是一款强大的基于IEC 61131-3标准的编程环境,广泛应用于PLC(可编程逻辑控制器)编程,尤其在工业自动化领域中占据重要地位。本案例包专注于运动控制中的“电子齿轮”概念,它是一种通过软件实现的虚拟机械装置,可以精确地控制电机的速度、位置和扭矩,以满足各种复杂的运动需求。 理解电子齿轮的基本原理至关重要。电子齿轮是通过软件算法模拟传统机械齿轮的传动比,它将一个电机的运动参数(如转速或位置)与另一个电机或其他输出设备关联,以达到期望的运动效果。这种方式相比物理齿轮,具有更高的灵活性和精度,同时减少了机械磨损和维护成本。 在Codesys环境中实现电子齿轮,通常涉及以下步骤: 1. **配置硬件**:确定需要控制的电机类型和对应的驱动器,连接到PLC。这可能包括伺服电机、步进电机等,每种电机都有其特定的控制方式和性能特性。 2. **建立项目**:在Codesys中创建新项目,选择适当的PLC型号和配置,为每个电机分配输入/输出(I/O)通道,用于接收传感器信号和发送控制指令。 3. **编写控制程序**:使用Codesys提供的编程语言(如Ladder Diagram、Structured Text等)编写电子齿轮的算法。这通常包括计算两个电机之间的传动比,以及实时调整速度和位置的指令。 4. **测试与调试**:运行程序并监控电机运动,确保电子齿轮功能正确无误。可能需要进行多次调试,优化算法以达到预期的精度和响应速度。 5. **集成到系统**:一旦电子齿轮工作正常,将其集成到整个生产流程或机器控制系统中,与其他设备协同工作。 压缩包中的“GearDemo”文件可能是一个完整的示例项目,包含预设的电子齿轮算法和配置。用户可以通过分析和运行这个示例,学习如何在Codesys中实现电子齿轮功能。通过研究代码和调整参数,开发者可以掌握这一技术,并将其应用到自己的工程项目中。 总结来说,Codesys的运动控制电子齿轮案例包提供了一个宝贵的教育资源,帮助工程师和学习者理解和实践这一先进技术。通过深入研究和实践,不仅可以提升对Codesys平台的熟悉度,还能掌握运动控制领域的关键技能,以应对各种复杂的自动化挑战。
2025-08-25 14:00:55 121.26MB Codesys 运动控制
1
内容概要:本文详细介绍了空调自控系统中恒温恒湿控制的实际应用案例,特别是采用西门子Smart200 PLC与MCGSpro触摸屏的组合。文中不仅展示了具体的PLC编程技巧,如温度湿度的PID控制、定时中断的应用以及状态变化检测等,还分享了许多宝贵的调试经验和注意事项,例如避免触摸屏误操作的方法、合理的死区设置以减少设备频繁启停、利用计时器实现设备轮休等功能。此外,文章强调了注释中调试笔记的价值,指出这些经验对于实际工程应用至关重要。 适合人群:从事工业自动化控制领域的工程师和技术人员,尤其是对PLC编程和人机界面设计有一定基础的人群。 使用场景及目标:适用于希望深入了解并掌握空调自控系统中恒温恒湿控制原理及其具体实现方法的专业人士。目标是在实际工程项目中能够更好地进行系统设计、优化性能以及故障排查。 其他说明:文章提供了完整的源程序供读者参考学习,所有程序均未加密,便于理解和修改。同时提醒读者关注程序中的注释部分,因为那里包含了大量来自一线工程师的真实调试心得。
2025-08-24 22:12:49 1.49MB
1
**HC32M140系列风机无传感器控制方案** 华大半导体的HC32M140系列风机无传感器控制方案是针对电机驱动技术的一种先进应用,它采用了电压采样换相技术,实现了无传感器的磁场定向控制(FOC,Field Oriented Control)。这种控制方法在电机驱动领域具有较高的效率和精度,尤其适用于需要高动态响应和低噪声的风机应用。 **无传感器FOC技术** 无传感器FOC是一种不需要额外霍尔效应传感器的电机控制策略,它通过精确计算电机的磁通位置来实现对电机磁场的实时控制。在HC32M140系列芯片中,这一功能通过集成的高性能处理器和算法实现。无传感器技术降低了系统成本,同时提高了系统的可靠性和稳定性。 **电压采样换相** 电压采样换相是无传感器FOC中的关键步骤,它通过监测电机绕组的电压变化来确定电机的相位信息。在每个换相点,控制器会根据电压信号调整逆变器的开关状态,确保电机的连续平稳运行。这种方法对于提高电机效率和降低噪声至关重要。 **HC32M140微控制器** HC32M140是华大半导体推出的一款针对电机控制优化的微控制器,集成了强大的CPU内核、丰富的外设接口以及专为电机控制设计的功能模块。其特点包括高速运算能力、低功耗模式、多种电机控制算法支持等,为风机无传感器控制提供了硬件基础。 **电机控制算法** 该方案中可能采用了基于电流和电压估计算法,如滑模观测器或自适应算法,用于实时估算电机的磁链位置。这些算法能够在没有传感器的情况下,准确跟踪电机的状态,从而实现精确的FOC控制。 **用户手册内容** 《HC32M140系列风机无传感器控制方案用户手册Rev1.0》应包含以下内容: 1. 微控制器HC32M140的详细介绍,包括硬件特性、性能指标和内部结构。 2. 无传感器FOC控制原理和实现方法,包括电压采样换相的详细步骤。 3. 控制算法的说明,如何利用芯片内置资源进行电机状态估计。 4. 应用电路设计指南,包括电机接口、电源管理、保护机制等。 5. 示例代码和开发工具的使用说明,帮助用户快速上手开发。 6. 故障排查和问题解决的建议,提升用户在实际应用中的体验。 HC32M140系列风机无传感器控制方案通过先进的控制算法和微控制器,为风机应用提供了高效、可靠的解决方案,是现代电机驱动技术的一个优秀实例。用户手册则为开发者提供了详细的技术指导,有助于实现高效且精准的电机控制系统。
2025-08-24 17:22:15 4.25MB 无传感器
1