MATLAB编程-群智能优化算法应用-人工蜂群算法实现PID参数整定
2023-05-03 19:44:14 3KB MATLAB 人工蜂群 PID参数整定
针对鲸鱼优化算法存在探索和开发能力难以协调、易陷入局部最优的不足,提出一种基于混沌搜索策略的鲸鱼优化算法(CWOA).首先,采用混沌反向学习策略产生初始种群,为全局搜索多样性奠定基础;其次,设计收敛因子和惯性权重的非线性混沌扰动协同更新策略以平衡全局探索和局部开发能力;最后,将种群进化更新与最优个体的混沌搜索机制相结合,以减小算法陷入局部最优的概率.对10个基准测试函数和6个复合测试函数进行优化,实验结果表明,CWOA在收敛速度、收敛精度、鲁棒性方面均较对比算法有较大提升.
1
为了实现微型足球机器人的平滑最优路径规划,提出了一种结合Ferguson样条路径描述和改进粒子群优化算法的路径规划方法。利用Ferguson样条描述移动机器人路径,将路径规划问题转化为三次样条曲线的参数优化问题,借助改进的具有速度变异的粒子群算法进行路径优化。仿真实验表明,算法可以有效进行障碍环境下机器人的无碰撞路径规划,改进的粒子群算法进行路径优化迭代80次左右即可收敛,规划路径平滑、合理,有一定的实用价值。
2023-04-13 09:56:56 1.43MB 论文研究
1
【智能优化算法】基于人工蜂群算法求解多目标优化问题附matlab代码.zip
2023-04-12 10:39:40 718KB matlab
1
这是一个关于多目标粒子群算法,很有用,代码通用性强 这是一个关于多目标粒子群算法,很有用,代码通用性强 这是一个关于多目标粒子群算法,很有用,代码通用性强 这是一个关于多目标粒子群算法,很有用,代码通用性强
2023-04-06 21:28:22 8KB matlab
1
智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、路径规划、无人机等多种领域的Matlab仿真
2023-04-06 16:36:40 341KB matlab
1
针对人工蜂群算法在求解函数优化问题中存在收敛精度不高、收敛速度较慢的问题,提出了一种改进的增强寻优能力的自适应人工蜂群算法。该算法利用逻辑自映射函数产生混沌序列对雇佣蜂搜索行为进行混沌优化,并引入萤火虫算法中的自适应步长策略动态调整观察蜂的搜索行为,从而提升了算法的局部搜索能力。基于标准测试函数的仿真结果表明,改进后的人工蜂群算法在寻优精度和收敛速度上均有明显提高。
1

为了进一步提高量子行为粒子群优化(QPSO) 算法的全局收敛性能, 有效改善算法中存在的粒子早熟问题,提出一种基于完全学习策略的改进QPSO 算法(CLQPSO). 该学习策略改变了QPSO 中局部吸引子的更新方式, 充分利用了种群的社会信息. 采用8 个测试函数对算法性能进行比较分析. 实验结果表明, 所提出的改进算法不仅收敛速度快, 而且全局收敛能力好, 收敛精度优于PSO 算法和QPSO 算法.

1
运用粒子群算法实现对几种测试函数最优解的搜寻,可对算法进行改进,提升算法的寻优性能。 粒子群算法几种改进方法: 1.权重改进:非线性权重、自适应权重等。 2.学习因子:学子因子动态调整 3.速度更新改进 4.加入新算子等等。
1