频率控制与滞环控制下的半桥和全桥LLC电路仿真比较:动态特性与闭环系统稳定性研究,频率控制与滞环控制下的半桥和全桥LLC电路仿真对比:动态特性与输出电压稳定性研究,频率控制和滞环控制的半桥 全桥LLC电路仿真对比 两种方式下均可实现输出电压闭环控制 ,模型中包含负载的阶跃变化过程 ,可以验证闭环系统稳定性 滞环控制和变频控制下的电感电流和输出电压波形图如第二幅图所示 ,在图中0.1s处进行了满载到半载的切 通过比对可以看出: 滞环控制下变器的动态特性好 鲁棒性强 输出电压跌落小 动态响应快 且采用滞环控制时,变器启动过程中输出电压几乎无超调 运行环境有:matlab simulink plecs等 ~ ,频率控制; 滞环控制; 半桥全桥LLC电路; 仿真对比; 输出电压闭环控制; 负载阶跃变化; 闭环系统稳定性; 电感电流波形; 输出电压波形; 动态特性; 鲁棒性; 启动过程超调; matlab simulink plecs。,Matlab Simulink PLECS中的LLC电路:滞环与频率控制半桥全桥仿真对比
2025-09-28 17:55:05 1.85MB istio
1
专为 C++ 开发岗(后端 / 客户端 / 嵌入式等)面试打造的 “八股文原理 + 源代码实战” 手册,覆盖 2025 年大厂高频考察的 120 个 C++ 核心知识点,每个考点配备 可编译运行的源代码示例,用 “代码讲原理” 替代纯文字背诵,帮你彻底搞懂 “面试官为什么这么问”“怎么用代码证明掌握深度”。 在深入分析C++程序设计语言时,理解内存管理是一个至关重要的部分,它涉及到程序运行时的数据存储和资源分配。C++语言将内存划分为几个不同的区域,包括栈、堆、全局/静态存储区、常量存储区和代码区。栈内存用于存储局部变量、函数参数和返回地址,由编译器自动管理,高效但空间有限。堆内存是动态分配的,允许程序员灵活控制内存的申请和释放,但可能导致内存碎片和泄漏。全局和静态变量存储在全局/静态存储区中,程序结束时由操作系统释放。常量存储区用于存放不可修改的数据,而代码区则存储了程序的指令代码。 内存分配的方式也对性能产生影响,栈分配速度快但不灵活,而堆分配虽然灵活但效率较低,且容易产生碎片。在内存分配的过程中,编译器或操作系统必须管理内存空间,保证数据的对齐,以适应硬件架构的限制。对齐内存可以提高数据访问效率并防止硬件异常。 在C++中,变量的生存周期取决于其作用域和存储类别。全局变量在整个程序中都有效,局部变量仅在函数执行期间有效,静态全局和静态局部变量则具有文件作用域或函数作用域,但只被初始化一次。这些不同的作用域和生存周期对程序的行为和资源管理有重要影响。 智能指针是现代C++中用于自动化内存管理的工具,它包括共享指针、弱指针和唯一指针。共享指针允许多个指针拥有同一资源,当最后一个共享指针被销毁时,资源会自动释放。唯一指针则保证了资源的唯一所有权,当唯一指针销毁时,资源也会被释放。弱指针用于解决共享指针的循环引用问题,它不控制资源的生命周期,但可以检测资源是否已经被释放。 在面试准备过程中,理解和实践这些核心概念对于展示一个候选人的能力至关重要。拥有深刻理解内存管理、智能指针使用以及其它核心概念如STL、多线程和模板元编程,能够帮助开发者在面试中脱颖而出。通过理论和实践结合,使用代码实例来证明自己对这些概念的深入理解,是面试准备中不可或缺的一部分。大厂面试官在面试过程中往往注重实际操作能力和对概念的深入理解,通过实际代码来展示自己对于这些考点的理解,无疑是最好的证明。
1
电化学阳极氧化金属钛箔制备TiO2纳米管阵列和光催化特性,王延宗,李大鹏,我们在含有NH4F的乳酸电解液中阳极氧化金属钛箔制备了高度有序的二氧化钛纳米管阵列,并研究了不同阳极氧化电压、NH4F浓度和阳极氧�
2025-09-24 17:41:59 484KB 首发论文
1
内容概要:本文档为 Conformal 软件的使用指南,包括了多种配置方式的支持与限制说明以及对 VHDL 和 SystemVerilog 语言的相关规定与用法介绍,提供了软件使用时应注意的关键细节。它详细阐述了关于全局信号、组件配置、嵌套配置等功能的操作规则和限制条件,还涵盖了SystemVerilog的模块层次支持情况。 适用人群:硬件设计师和验证工程师,以及从事VHDL或者SystemVerilog语言进行设计描述的工程技术人员。 使用场景及目标:帮助专业人员理解和应用 Conformal 工具来完成等价性检查任务,确保两个不同但理论上等价的设计实际表现一致,提升设计验证的有效性和准确性。 其他说明:请注意,在多个实体间定义同一全局信号是不被允许的做法之一,同时文中提到了特定配置下不受支持的功能列表。
2025-09-24 10:11:46 3.57MB VHDL SystemVerilog
1
(1)记录方法 在 ADAMS/View 菜单栏中,选择 Tools > Macro > Record/Replay > Record Start,开始记 录宏命令; 执行要用宏命令完成的所有操作; 在 ADAMS/View 菜单栏中,选择 Tools > Macro > Record/Replay > Record Stop,停止记 录宏命令。 (2)记录宏命令的回放 在 ADAMS/View 菜单栏中,选择 Tools > Macro > Record/Replay > Execute Recorded Macro,可以回放记录的宏命令。 (3)宏命令的保存 在 ADAMS/View 菜单栏中,选择 Tools > Macro > Record/Replay > Write Recorded Macro, 可以保存记录的宏命令。 此时记录的宏命令为 macro.cmd,为避免被覆盖,应该改变其名称。 2. 宏命令编辑器 宏命令编辑器可以对记录的宏命令和读入的命令文件进行编辑,它同时也可以创建宏命 令。 在 ADAMS/View 菜单栏中,选择 Tools > Macro > Edit > New(Modify),可以创建或修 改宏命令。 宏命令编辑器如图 5 � 5 所示。如果创建新的宏命令,应该在“Macro Name”栏中输入 宏命令的名称;在“Command”栏中定义宏命令的命令,也可以使用宏命令的名字作为命令 (选择 Use Macro Name);定义是否采用单步回复修改命令,通常选“yes”;按“OK”, 完成宏命令的创建。 图 5 � 5 宏命令编辑器 图 5 � 6 读入宏命令对话窗 3. 输入命令文件 在 ADAMS/View 菜单栏中,选择 Tools > Macro > Read,系统弹出读入宏命令对话窗, 如图 5 � 6 所示。 在“Macro Name”栏中输入要保存为宏命令的名字;在“File Name”栏中输入要调入的 命令文件;在“User Entered Command”栏中定义宏命令的命令字符串;定义“undo”命令, 通常选“yes”;定义“help”内容;定义“Create Panel”内容,通常选“no”;按“OK”, 输入宏命令。
2025-09-23 21:17:56 5.97MB
1
利用COMSOL软件对光纤FP(Fabry-Pérot)干涉仪进行建模的方法及其光谱特性分析。首先阐述了光纤FP干涉仪的基本原理,包括光在两个反射面之间的干涉现象及其数学表达式。接着,重点讲解了在COMSOL环境中如何定义物理场、几何结构、材料属性和边界条件,从而建立完整的干涉光谱模型。最后,展示了通过模拟获得的干涉光谱图,并讨论了不同参数变化对光谱的影响。 适合人群:从事光学工程、光电子学领域的研究人员和技术人员,尤其是那些希望深入了解光纤FP干涉仪工作原理并掌握COMSOL建模技能的人群。 使用场景及目标:适用于需要对光纤FP干涉仪进行理论研究或实际应用开发的场合,如提高光纤传感器的测量精度、优化光通信系统的滤波器性能等。通过对该模型的学习和应用,可以更好地理解和预测光纤FP干涉仪的行为。 其他说明:文中提供了部分MATLAB风格的伪代码片段,用以辅助解释COMSOL建模的关键步骤。此外,还强调了不同参数(如干涉仪长度、材料折射率)对干涉光谱的具体影响。
2025-09-23 09:35:57 868KB COMSOL 光学仿真
1
通过采用Adomian分解方法,解决了分数阶简化Lorenz系统并在数字信号处理器(DSP)上实现了该方法。 该系统的Lyapunov指数(LE)光谱是基于QR分解法计算的,与相应的分叉图非常吻合。 我们通过颜色最大LE(LEmax)和混沌图分析了参数和分数导数阶数对系统特性的影响。 发现阶数越小,LEmax越大。 迭代步长也会影响混沌的最低顺序。 此外,我们在DSP平台上实现了分数阶简化的Lorenz系统。 在DSP上生成的相图与通过计算机仿真获得的结果一致。 它为分数阶混沌系统的应用奠定了良好的基础。 ### 基于Adomian分解方法的分数阶简化Lorenz系统的特性分析和DSP实现 #### 摘要 本文研究了分数阶简化Lorenz系统的特性,并使用Adomian分解方法求解该系统。此外,还在数字信号处理器(DSP)上实现了此方法。系统Lyapunov指数(LE)光谱的计算基于QR分解法,结果显示其与对应的分岔图高度匹配。我们通过色彩最大LE(LEmax)和混沌图来分析参数和分数导数阶数对系统特性的影响。研究发现,阶数越小,LEmax越大;迭代步长也会影响混沌存在的最低阶数。此外,我们还在DSP平台上实现了分数阶简化的Lorenz系统,生成的相图与通过计算机仿真得到的结果相符,为分数阶混沌系统的应用提供了良好的基础。 #### 关键知识点详解 **1. 分数阶微积分** 分数阶微积分是一门研究非整数阶导数和积分的数学分支,它扩展了传统的微积分理论。在分数阶微算中,导数的阶数可以是非整数形式,例如0.5或1.7等。分数阶微积分在描述具有记忆特性的物理过程方面具有独特优势,特别是在非线性动力学、控制理论等领域有着广泛的应用前景。 **2. 简化Lorenz系统** Lorenz系统是一种经典的混沌模型,由爱德华·诺顿·洛伦兹在1963年提出,用于模拟大气环流。简化Lorenz系统是指在原始Lorenz系统基础上进行简化后的版本,通常保留了原系统的混沌特性但减少了复杂度,使其更易于数值分析和理论研究。 **3. Adomian分解方法** Adomian分解方法(ADM)是由乔治·阿多米安提出的一种解析和数值解非线性方程的方法。这种方法将复杂的非线性方程分解成一系列容易解决的线性方程,从而避免了传统方法中的迭代过程,提高了计算效率和准确性。对于分数阶微分方程,Adomian分解方法特别有用,因为它能够有效地处理这类方程的复杂性。 **4. Lyapunov指数光谱** Lyapunov指数是用来衡量动力系统长期行为稳定性的指标,特别是对于混沌系统来说非常重要。Lyapunov指数光谱可以揭示系统中的各种动态特征,如稳定性、周期性和混沌性。通过计算系统不同参数下的Lyapunov指数光谱,可以深入理解系统的动态行为。 **5. QR分解法** QR分解是一种矩阵分解方法,用于将矩阵分解为一个正交矩阵Q和一个上三角矩阵R的乘积。在本文中,QR分解法被用来计算简化Lorenz系统的Lyapunov指数光谱。这种计算方法的优点在于能够提供更加准确和稳定的指数估计值。 **6. 数字信号处理器(DSP)实现** DSP是一种专门设计用于快速执行信号处理算法的处理器。本文中,在DSP上实现了分数阶简化Lorenz系统及其Adomian分解方法。这不仅验证了方法的有效性,还为实际应用中的实时处理提供了可能。通过在DSP上生成的相图与通过计算机仿真得到的结果的一致性,证明了该方法在DSP平台上的可行性。 **结论** 本研究通过采用Adomian分解方法解决了分数阶简化Lorenz系统,并在数字信号处理器上实现了该方法。通过对系统特性的影响分析表明,分数导数阶数的减小会导致最大Lyapunov指数增大,而迭代步长也会影响混沌现象的存在条件。此外,DSP实现的成功验证了分数阶混沌系统在实际应用中的潜力,为进一步的研究和发展奠定了坚实的基础。
2025-09-19 16:30:29 617KB Fractional calculus; simplified Lorenz
1
"M3C模块化多电平矩阵变换器仿真研究:双调制策略下的输入输出特性与海上风电风力发电配网运行方案",模块化多电平矩阵变器(M3C)仿真两个,包含最近电平逼近调制和载波移相调制, 输入50 3Hz 2021a版本 输出50Hz 适用于海上风电 风力发电 配网运行方案。 ,M3C仿真;最近电平逼近调制;载波移相调制;输入50 3Hz 2021a版本;输出50Hz;海上风电;风力发电;配网运行方案,"M3C仿真研究:双调制策略下海上风电配网运行优化" 本文深入探讨了M3C模块化多电平矩阵变换器(MMC)的仿真研究,重点关注了双调制策略下的输入输出特性,并结合海上风电风力发电配网运行方案。M3C作为一类新型的电力电子装置,能够实现高效率和大容量的功率转换。在海上风电这种特定应用背景下,M3C的稳定性和可靠性对于整个电力系统至关重要。 在仿真研究中,M3C采用了两种重要的调制策略:最近电平逼近调制和载波移相调制。这两种调制方式在电力电子领域中应用广泛,它们能够有效提高电力变换器的性能。最近电平逼近调制通过选择最接近参考信号的电平来生成开关信号,从而最小化开关频率和降低损耗。而载波移相调制则是通过改变载波之间的相位差来减少输出电压的谐波含量,提升输出电能的质量。 文章中提到的仿真输入频率为50Hz,这表明研究考虑的是标准工频电力系统。仿真过程中使用的软件版本为MATLAB 2021a,这说明在最新的仿真平台上对M3C的性能进行了评估。仿真输出则为50Hz的频率,这是配网运行所要求的标准频率,尤其适合海上风电和风力发电系统,因为这些系统的输出电能需要符合电网的通用标准以实现并网。 海上风电作为可再生能源的一种,具有巨大的发展潜力和环境优势。由于海上风电场往往远离陆地,因此需要一种高效的电力转换系统将风能转换为电能,并通过海底电缆传输至陆地电网。M3C因其模块化设计和多电平结构,在处理电压波动、频率变化以及提供稳定电力输出方面表现出色,这对于海上风电配网运行至关重要。 风力发电配网运行方案涉及将风力发电机组产生的电能通过变电所和输电线路分配至各个用户和电网。在这一过程中,M3C的使用可以提高电能质量和传输效率,同时减少能量损失。由于风力发电的间歇性和不稳定性,M3C能够提供灵活的电力调节能力,对电网进行动态响应,从而确保电力系统的稳定运行。 此外,文档中提到的图片文件(如3.jpg、6.jpg等),虽未具体描述内容,但可以推测它们可能与M3C仿真模型的结构、波形图、实验结果或其他视觉化数据有关。这些图片对于理解M3C的工作原理和仿真效果至关重要,有助于直观地展示仿真过程和结果。 本研究通过仿真分析了M3C在海上风电和风力发电配网运行中的应用,探讨了双调制策略对提高电能质量和系统稳定性的影响。研究结果将为电力系统工程师提供宝贵的参考,有助于优化风力发电系统的运行性能,推动可再生能源的高效利用。
2025-09-19 14:43:10 1.28MB
1
内容概要:本文详细介绍了如何利用PSIM9.1软件构建全桥LLC变换器的闭环仿真模型,涵盖主电路搭建、参数设置、闭环控制逻辑以及仿真的具体步骤。文中不仅探讨了关键组件如MOSFET、变压器的设计要点,还展示了如何通过调整参数优化ZVS特性和频率响应,确保仿真结果贴近实际情况。此外,针对常见的仿真问题提供了实用解决方案,如防止高频振荡、提高仿真收敛性等。 适合人群:从事电力电子设计的专业人士,尤其是对LLC变换器及其闭环控制系统感兴趣的工程师和技术爱好者。 使用场景及目标:适用于希望深入了解LLC变换器工作原理及其实现细节的研究人员和开发者。通过本文的学习,能够掌握如何使用PSIM进行高效、精确的仿真,从而为实际硬件设计提供理论支持和数据依据。 其他说明:文中提供的实例和技巧有助于提升仿真的准确性,避免常见错误,同时也能更好地理解和优化LLC变换器的各项性能指标。
2025-09-18 20:20:49 485KB
1
基于Simulink建模的100kW微型燃气轮机系统:多模块协同工作与变工况特性下的性能分析与控制策略研究,基于微燃机模块搭建的Simulink模型仿真分析:控制变工况特性下效率、转速及参数变化研究,搭建100kW微型燃气轮机Simulink建模~~~微燃机包括压缩机模块、容积模块、回热器模块、燃烧室模块、膨胀机模块、转子模块以及控制单元模块。 考虑微燃机变工况特性下的流量、压缩绝热效率、膨胀绝热效率、压缩比、膨胀比等参数的变化,可以观察变负载情况下微燃机转速、燃料量、发电效率、排烟温度等等参数的变化情况。 控制器主要包括转速控制、温度控制和加速度控制。 每一个控制环节输出一个燃料基准,经过最小值选择器后作为燃料供给系统的输入信号。 ,核心关键词: 1. 微型燃气轮机Simulink建模 2. 微燃机模块 3. 流量参数 4. 绝热效率 5. 膨胀比 6. 变工况特性 7. 转速 8. 燃料供给系统 9. 控制器 10. 最小值选择器 用分号分隔的关键词结果为:微型燃气轮机Simulink建模; 微燃机模块; 流量参数; 绝热效率; 膨胀比; 变工况特性; 转速; 燃料供给系统;
2025-09-15 15:58:37 642KB csrf
1