YOLOv5疲劳驾驶数据集和疲劳驾驶检测系统源码。本项目采用该进YOLOv5进行疲劳特征检测模型训练,引入注意力机制,在疲劳视频测试阶段,引入deep-sort目标跟踪算法 疲劳检测模型,基于YOLOv5网络结构进行训练。采用YawnDD,CEW,DROZY数据集,对其中部分视频进行分帧处理。共标记6800张样本,按照4:1分为训练集和测试集。 本项目分别采用YOLOv5模型:YOLOv5s, YOLOv5m, YOLOv5l, YOLOv5进行多次训练 YOLOv5疲劳驾驶数据集和疲劳驾驶检测系统源码。本项目采用该进YOLOv5进行疲劳特征检测模型训练,引入注意力机制,在疲劳视频测试阶段,引入deep-sort目标跟踪算法 疲劳检测模型,基于YOLOv5网络结构进行训练。采用YawnDD,CEW,DROZY数据集,对其中部分视频进行分帧处理。共标记6800张样本,按照4:1分为训练集和测试集。 本项目分别采用YOLOv5模型:YOLOv5s, YOLOv5m, YOLOv5l, YOLOv5进行多次训练
现实中基于图像处理的疲劳驾驶监测往往因环境的变化而具有不确定性。监测算法不规范,以致于疲劳驾驶监测任务很具有挑战性。为了解决此问题,提出了一种基于多算法融合的动态滑动窗口算法框架。首先利用Adaboost算法识别人眼,然后改进Otsu算法来自适应各种不同环境;进而提出动态滑动窗口算法来得到睁闭眼之间的最佳阈值;最终,利用改进的PERCLOS算法估计疲劳驾驶状态的不同级别。针对环境的变化采用睁闭眼判断窗口随人眼特征变化而更新的策略,系统使用摄像头实时捕获人眼图像,并在PC机上进行仿真测试,可在130~150ms之间实现不同疲劳状态的识别。实验结果表明,此算法框架能够有效、快速的分辨驾驶员不同的疲劳状态。
1
基于matlab的人眼疲劳检测,可以非常不错的检测出是否处理疲劳状态,代码可以直接运行,效果不错,very very good,觉得不错的话就点个赞哦
2022-05-11 11:07:51 113KB 人工智能 matlab 疲劳检测 图像处理
1
基于人脸识别的夜间疲劳驾驶判断方法.pdf
1
基于SVM的疲劳驾驶系统。基于神经网络的非接触式疲劳驾驶检测已成为当前针对疲劳驾驶检测领域炙手可热的研究方向。它有效解决了接触式疲劳检测方法给驾驶员带来的干扰以及单一信号源对于反映疲劳程度可靠性低的问题,同时通过设计神经网络模型对多源信息进行分类,实现对疲劳状态的高精度和高速度的检测。选取合适的特征值对网络检测准确率以及准确反映疲劳程度至关重要。基于驾驶员生理信号检测可靠性和准确性较高。
2022-05-06 10:45:33 87KB SVM SVM分类 驾驶员 疲劳
疲劳驾驶检测图像数据集(两种标签,2900多张图像,VOC,COCO).zip
2022-05-03 21:06:36 256.88MB 文档资料 疲劳驾驶检测图像数据集
MATLAB疲劳驾驶实现。输入视频,分帧,人脸定位,人眼定位,睁眼闭眼定位,统计闭眼率,从而判断疲劳。
2022-05-02 12:01:47 4.93MB matlab疲劳检测 matlab人眼定位
1
这个题目是利用matlab语言。进行眼部判别的疲劳检测系统。带有人机交互界面,可以在GUI界面的基础上进行相应的拓展。
2022-05-01 13:12:00 4.93MB matlab 开发语言
1
疲劳驾驶检测数据集 VOC格式 可以用于实际项目