在线统计过程控制(SPC,Statistical Process Control)系统是一种用于监控和改进生产过程质量的工具,它通过收集和分析实时数据,帮助制造企业确保产品的质量和一致性。在本毕业设计课题《基于SPC的产品质量在线分析系统》中,我们将深入探讨SPC的核心概念和其在实际生产环境中的应用。 我们需要理解SPC的基本原理。SPC基于统计学原理,通过图表如控制图(Control Charts)来监测生产过程中的关键特性,如尺寸、重量、强度等,以确定过程是否处于受控状态。控制图上有两个关键线:平均值线(Center Line)和上下控制限(Upper and Lower Control Limits),它们可以帮助识别出过程中的异常变化。 在在线SPC系统中,数据的实时收集和处理至关重要。系统通常会与生产设备或其他传感器集成,自动捕获生产数据,然后进行计算和分析。这样可以快速发现任何偏离正常操作的迹象,及时采取措施防止不良品的产生,从而减少浪费,提高效率。 该毕业设计可能涉及以下关键知识点: 1. **数据采集**:理解如何从生产线上的设备或传感器中收集数据,这可能涉及到物联网(IoT)技术和接口编程。 2. **数据预处理**:清洗和整理收集到的数据,去除异常值,确保分析的有效性。 3. **统计分析**:使用统计方法,如均值、标准差、极差(R)和西格玛(σ)计算,以及绘制控制图,如X-bar图、R图或P图。 4. **决策规则**:学习并应用控制图的决策规则,判断过程是否稳定,何时需要采取行动。 5. **报警与反馈机制**:设计系统能在过程出现异常时触发报警,并指导操作员进行相应的调整。 6. **可视化界面**:创建用户友好的图形界面,展示控制图和其他关键性能指标,便于管理层和一线员工理解过程状态。 7. **系统集成**:与企业资源计划(ERP)、制造执行系统(MES)等其他业务系统的集成,实现全生产流程的无缝监控。 8. **持续改进**:通过SPC系统发现的问题,推动实施纠正措施和预防措施,持续优化生产过程。 9. **法规合规性**:了解在特定行业(如医药、汽车等)中,SPC在质量管理体系中的法规要求,如ISO 9001、GMP等。 这个毕业设计课题提供了一个实践SPC理论的机会,通过实际项目锻炼学生的数据分析能力、编程技能和问题解决能力,同时也有助于理解和应用质量管理的理论知识。完成这样一个项目,学生将能够为未来的工业4.0和智能制造环境做好准备。
2024-09-27 20:05:40 3.01MB
1
微信跑步统计小程序-悦跑圈源代码,仿微信跑步步数统计,可记录用户跑步的轨迹,与地图结合使用,在地图上标记出跑步的线路,记录步数,记录里程数和跑步用时,可统计使用本小程序跑步的排行榜,跑步名次记录等,和微信中的步数统计有相似之处。
2024-09-20 15:15:06 14KB 微信
1
城市问题上的词云方法 Scopus提供的一些关于城市问题的简单统计数据 数据来源 本统计以爱思唯尔的摘要和应用数据库作为数据来源,所选文献均是标题,摘要以及关键词中匹配检索关键词的文章,时间范围是2012年(含)以来的文章。 方法 本统计利用Scopus自带的文献检索以及信息输出功能,检索命令分别如下: TITLE-ABS-KEY ( "smart city" ) AND PUBYEAR > 2011 TITLE-ABS-KEY ( "urban resilience" ) AND PUBYEAR > 2011 TITLE-ABS-KEY ( "urban water" ) AND PUBYEAR > 2011 TITLE-ABS-KEY ( "urban" ) OR TITLE-ABS-KEY ( "city" ) AND TITLE-ABS-KEY (
2024-09-12 14:38:03 3.57MB
1
1、tiny_yolov4文件夹: 目标检测算法源码,包括:网络搭建、训练好的权重、解码文件、预测文件。 为提升算法速度,我摒弃了YOLOv4框架而采用了Tiny_YOLOv4框架,检测精度虽然有所下降,但每帧推理速度从0.17s提升至0.03s。 2、predict.py: 用于验证目标检测的效果,可单独独立出来运行,与目标跟踪无关。 3、kalman.py: 卡尔曼滤波器,基于恒速运动模型,预测下一帧目标物体的位置。 4、tracker.py: 存储每个时刻不同目标物体的状态,管理目标跟踪整个系统运作过程。 5、main.py: 整个项目的运行入口,直接运行main.py,就可以调用Tiny_YOLOv4 + Sort,处理视频流信息,完成目标跟踪、车流量统计。 6、MVI_39211、MVI_39031:DATRAC数据集测试集的两个视频,交通路段车流量画面。demo1、demo2:调用目标跟踪算法,车流量的每帧统计结果。
2024-09-11 14:58:13 935.7MB
1
《测度论与概率论》是Krishna B. Athreya所著的一部经典教材,由Springer出版社出版,并被广泛用作Iowa州立大学统计学的教学材料。这本书深入探讨了测度论和概率论的基础理论及其在统计学中的应用。下面将对其中涉及的主要知识点进行详细阐述。 测度论是数学分析的一个分支,它为实数集合提供了量化的方法,超越了传统的长度、面积和体积的概念。在《测度论》部分,书中的内容可能包括: 1. **σ-代数**:它是定义测度的先决条件,是一组集合的集合,满足特定的封闭性属性,如空集、可数并集和补集。 2. **测度**:测度是分配非负值给σ-代数中集合的函数,它可以是有限的、可数无穷大或完全无限。Lebesgue测度是最著名的例子,它在实数线上扩展了长度的概念。 3. **积分**:书中可能会介绍勒贝格积分,它是黎曼积分的推广,可以处理更广泛的函数类型,包括不连续和无穷的函数。 4. **Banach空间和Hilbert空间**:这些是测度论中常用的函数空间,它们在理解随机过程和概率极限定理时扮演重要角色。 概率论是研究随机现象的数学理论。《概率论》部分可能涵盖: 1. **概率空间**:由样本空间、事件的σ-代数和概率测度组成的三元组,定义了一个概率模型的基础框架。 2. **条件概率**:在已知某些信息的情况下,事件发生的概率。书中可能详细讨论了Bayes公式及其应用。 3. **独立事件**:如果两个事件的发生互不影响,则称它们相互独立。理解独立事件对于构建复杂的概率模型至关重要。 4. **随机变量**:它可以是离散的,如掷骰子的结果,也可以是连续的,如人的身高。它们的分布是概率论的核心概念。 5. **大数定律**:这组定理描述了随着试验次数增加,样本均值趋于期望值的现象。有弱大数定律和强大数定律之分。 6. **中心极限定理**:无论原始分布是什么,独立同分布的随机变量的和通常会趋近于正态分布,这是统计推断的基础。 7. **分支过程**、**马尔可夫过程**、**随机过程**等章节则可能深入到时间序列和随机系统的行为分析。 8. **鞅**:在概率论中,鞅是一种具有特殊性质的随机过程,它们在金融工程和风险管理中有广泛应用。 9. **乘积测度**、**卷积**和**变换**:这些概念涉及到概率分布的组合和变换,对于理解和构造复杂概率模型非常有用。 每个子文件名都对应着一个具体主题,例如"Branching Processes.pdf"可能详细讲解分支过程的理论和应用,而"Central Limit Theorems.pdf"则可能全面讨论各种中心极限定理。通过阅读这些篇章,读者可以系统地学习和掌握测度论和概率论的基本概念、理论和方法,为在统计学和相关领域进行深入研究打下坚实基础。
2024-09-03 22:55:17 6.34MB measure theory probability theory
1
C#Winform 中DataGridView实现DataGridView可见区域底部显示合计行,这里我封装成了一个控件,使用的时候只要做三件是就行了。 1、给控件指定你需要合计的DataGridView 2、再指定控件的SumColumnList和ShowTotal属性的值,SumColumnList是需要合计的列的名称的集合,ShowTotal是“合计”显示位置。 3、最后绑定你需要显示合计的DataGridView的数据源。 就这么简单,就这3步,
2024-08-26 09:54:55 11KB DataGridView total
1
机器学习数学基础:线性代数+微积分+概率统计+优化算法 机器学习作为现代科技的璀璨明珠,正在逐渐改变我们的生活。而在这背后,数学扮演着至关重要的角色。线性代数、微积分、概率统计和优化算法,这四大数学领域为机器学习提供了坚实的理论基础。 线性代数是机器学习中的基础语言。矩阵和向量作为线性代数中的核心概念,是数据表示和计算的基础。在机器学习中,我们经常需要将数据转化为矩阵形式,通过矩阵运算提取数据的特征。特征提取是机器学习模型训练的关键步骤,而线性代数则为我们提供了高效处理数据的工具。 微积分则是机器学习模型优化的得力助手。在机器学习中,我们通常需要找到一种模型,使得它在给定数据集上的性能达到最优。这就需要我们对模型进行求导,分析模型参数对性能的影响,进而调整参数以优化模型。微积分中的导数概念为我们提供了分析模型性能变化的方法,帮助我们找到最优的模型参数。 概率统计则是机器学习数据处理和模型评估的基石。在机器学习中,数据往往带有噪声和不确定性,而概率统计可以帮助我们评估数据的分布和特征,进而构建更加稳健的模型。同时,概率统计也为我们提供了模型评估的方法,通过计算模型的准确率、召回率 ### 机器学习数学基础详解 #### 一、线性代数基础 **1.1 向量和矩阵** - **1.1.1 标量、向量、矩阵、张量之间的联系** 标量、向量、矩阵和张量是线性代数中的基本概念,它们之间存在着紧密的联系。 - **标量(Scalar)**:一个单独的数字,没有方向。 - **向量(Vector)**:一组有序排列的数字,通常用来表示方向和大小。 - **矩阵(Matrix)**:一个二维数组,由行和列组成的数据结构。 - **张量(Tensor)**:一个更高维度的数组,它可以是标量(0维)、向量(1维)、矩阵(2维)或更高维度的数组。 **联系**:标量可以视为0维张量;向量是一维张量;矩阵是二维张量;更高维度的数组称为张量。 - **1.1.2 张量与矩阵的区别** - **代数角度**:矩阵是二维张量,而更高维度的张量则包含了更复杂的数据结构。 - **几何角度**:矩阵和向量都是不变的几何量,不随参照系的变化而变化。张量也可以用矩阵形式来表达,但其可以扩展到更高的维度。 - **1.1.3 矩阵和向量相乘结果** 当一个矩阵与一个向量相乘时,可以理解为矩阵的每一行与向量相乘的结果构成新的向量。 - 例如,如果有一个$m \times n$的矩阵$A$与一个$n \times 1$的向量$x$相乘,结果将是一个$m \times 1$的向量$y$,其中每个元素$y_i = \sum_{j=1}^{n} a_{ij}x_j$。 - **1.1.4 向量和矩阵的范数归纳** 向量的范数是衡量向量大小的一种标准。 - **向量的1范数**:向量各分量的绝对值之和。 - 对于向量$\vec{x} = (x_1, x_2, ..., x_n)$,其1范数定义为$||\vec{x}||_1 = |x_1| + |x_2| + ... + |x_n|$。 - **向量的2范数**:也称为欧几里得范数,是各分量平方和的开方。 - $||\vec{x}||_2 = \sqrt{x_1^2 + x_2^2 + ... + x_n^2}$。 - **向量的无穷范数**:向量各分量的最大绝对值。 - $||\vec{x}||_\infty = \max(|x_1|, |x_2|, ..., |x_n|)$。 **1.2 导数和偏导数** - **1.2.1 导数偏导计算** 导数用于描述函数在某一点处的变化率,而偏导数则是多元函数关于其中一个自变量的变化率。 - **1.2.2 导数和偏导数有什么区别?** - **导数**:对于单一自变量的函数$f(x)$,导数$f'(x)$描述了该函数在$x$点处的切线斜率。 - **偏导数**:对于多变量函数$f(x_1, x_2, ..., x_n)$,偏导数$\frac{\partial f}{\partial x_i}$描述了当保持其他变量不变时,$f$关于$x_i$的变化率。 **1.3 特征值和特征向量** - **1.3.1 特征值分解与特征向量** 特征值和特征向量是线性代数中的重要概念,用于理解和简化矩阵。 - **特征值**:如果存在非零向量$\vec{v}$使得$A\vec{v} = \lambda\vec{v}$,那么$\lambda$就是矩阵$A$的一个特征值。 - **特征向量**:满足上述等式的非零向量$\vec{v}$。 - **1.3.2 奇异值与特征值的关系** - **奇异值**:对于任何矩阵$A$,其奇异值是$A^\top A$(或$AA^\top$)的特征值的平方根。 - **关系**:奇异值和特征值在特定情况下相同,尤其是在正交矩阵和对称矩阵中。 #### 二、微积分基础 - **1.2 导数和偏导数**(已在上文提到) - **1.3 特征值和特征向量**(已在上文提到) #### 三、概率统计基础 **1.4 概率分布与随机变量** - **1.4.1 机器学习为什么要使用概率** 在机器学习中,概率用于描述数据的不确定性,并提供了一种量化方式来预测未来事件的可能性。 - **1.4.2 变量与随机变量有什么区别** - **变量**:可以取多种不同值的量。 - **随机变量**:变量的一种特殊类型,其值是根据某个概率分布随机确定的。 - **1.4.3 随机变量与概率分布的联系** - 随机变量的每个可能值都对应一个概率,这些概率构成了随机变量的概率分布。 - **1.4.4 离散型随机变量和概率质量函数** - **离散型随机变量**:只能取有限个或可数无限个值的随机变量。 - **概率质量函数**:描述离散型随机变量各个值的概率。 - **1.4.5 连续型随机变量和概率密度函数** - **连续型随机变量**:可以取区间内的任意值的随机变量。 - **概率密度函数**:描述连续型随机变量在某一区间的概率密度。 - **1.4.6 举例理解条件概率** - 条件概率$P(A|B)$表示在事件$B$已经发生的条件下,事件$A$发生的概率。 - 例如,假设在一个班级中,$P(\text{女生}) = 0.5$,$P(\text{女生|戴眼镜}) = 0.6$,意味着在戴眼镜的学生中,60%是女生。 - **1.4.7 联合概率与边缘概率联系区别** - **联合概率**:两个事件同时发生的概率。 - **边缘概率**:单个事件发生的概率。 - **联系**:联合概率可以通过边缘概率和条件概率计算得出。 - **1.4.8 条件概率的链式法则** - 条件概率的链式法则描述了如何通过一系列条件概率来计算联合概率。 - 例如,$P(A,B,C) = P(C|A,B)P(B|A)P(A)$。 - **1.4.9 独立性和条件独立性** - **独立性**:两个事件$A$和$B$独立,如果$P(A|B) = P(A)$且$P(B|A) = P(B)$。 - **条件独立性**:事件$A$和$B$在已知事件$C$的情况下条件独立,如果$P(A|B,C) = P(A|C)$。 **1.5 常见概率分布** - **1.5.1 Bernoulli分布** - 描述只有两种可能结果的随机试验(如成功或失败)的概率分布。 - 参数$p$表示成功的概率,失败的概率为$1-p$。 - **1.5.2 高斯分布** - 又称正态分布,是一种非常常见的连续概率分布。 - 参数$\mu$代表均值,$\sigma^2$代表方差。 - **1.5.3 何时采用正态分布** - 正态分布广泛应用于自然和社会科学领域,特别是在中心极限定理的支持下,很多随机变量可以近似为正态分布。 - **1.5.4 指数分布** - 描述事件发生的时间间隔的分布。 - 参数$\lambda$表示事件发生的平均频率。 - **1.5.5 Laplace 分布** - 也是一种连续概率分布,具有比高斯分布更重的尾部。 - 参数$\mu$代表均值,$b$代表尺度参数。 - **1.5.6 Dirac分布和经验分布** - **Dirac分布**:一个概率质量集中在单个点的分布。 - **经验分布**:基于观测数据的分布,反映了数据的真实概率分布情况。 **1.6 期望、方差、协方差、相关系数** - **1.6.1 期望** - 期望是对随机变量取值的加权平均。 - 对于离散型随机变量,期望定义为$E[X] = \sum x_i p(x_i)$。 - **1.6.2 方差** - 方差衡量随机变量与其期望值之间的偏差程度。 - 定义为$Var(X) = E[(X-E[X])^2]$。 - **1.6.3 协方差** - 协方差描述两个随机变量之间的线性相关性。 - 定义为$Cov(X,Y) = E[(X-E[X])(Y-E[Y])]$。 - **1.6.4 相关系数** - 相关系数是标准化后的协方差,用于衡量两个变量的相关强度。 - 定义为$\rho_{XY} = \frac{Cov(X,Y)}{\sigma_X \sigma_Y}$,其中$\sigma_X$和$\sigma_Y$分别是$X$和$Y$的标准差。 通过以上详细的介绍,我们可以看到,线性代数、微积分、概率统计和优化算法在机器学习中的应用极为广泛,它们为机器学习提供了坚实的数学基础。掌握这些基础知识对于深入理解机器学习算法至关重要。
2024-08-23 11:30:23 852KB 机器学习 线性代数
1
在Unity游戏开发中,集成数据分析工具是至关重要的一步,它能帮助开发者了解用户行为、优化游戏体验并提高用户留存率。 TalkingData是中国领先的移动互联网大数据服务商,提供了专门针对Unity游戏的统计分析SDK,使得开发者可以方便地在Unity工程中集成其服务。本教程将详细介绍如何在Unity中集成TalkingData,并确保在Android和iOS平台上运行正常。 我们来下载并导入`TalkingData.unitypackage`文件。这是 TalkingData 提供的Unity插件,包含了所有必要的资源和脚本。打开Unity编辑器,选择“Assets”菜单,然后点击“Import Package”,再选择“Custom Package”。在弹出的对话框中,找到并选择下载的`TalkingData.unitypackage`文件,点击“Open”导入。 集成过程分为几个步骤: 1. **配置项目设置**:在导入插件后,你可能会看到一个名为`TalkingDataConfig`的文件夹,其中包含`TalkingDataSettings`脚本。这个脚本是用来配置TalkingData SDK的,你需要在这里填写你的App ID,这可以在TalkingData的开发者后台获取。 2. **初始化 TalkingData**:在你的主场景中,通常会有一个`Start()`或`Awake()`方法。在这个方法内,调用`TalkingData.StartWithAppId()`函数,传入你在`TalkingDataSettings`中配置的App ID,进行SDK的初始化。例如: ```csharp void Start() { TalkingData.StartWithAppId("your_app_id"); } ``` 3. **事件追踪**:TalkingData的强大之处在于它支持自定义事件追踪,这样你可以记录玩家在游戏中执行的各种操作。例如,你可以创建一个函数来追踪玩家完成关卡的事件: ```csharp void OnLevelFinished() { TalkingData.TrackEvent("LevelFinished", new Dictionary {{"level", "1-1"}}); } ``` 在这里,`TrackEvent`函数接收事件名称和一个可选的字典,用于传递附加信息。 4. **适配不同平台**:虽然我们在导入时已经确认了插件能在Android和iOS上工作,但还是需要进行一些平台特定的配置。对于Android,确保在`Player Settings`的`Other Settings`里勾选“Scripting Backend”为IL2CPP,因为 TalkingData 的SDK可能不支持Mono。对于iOS,确保在“Scripting Runtime Version”选择`.NET 4.x Equivalent`,并且在Xcode中配置好TalkingData的SDK。 5. **发布与测试**:在完成上述步骤后,构建并发布你的游戏到Android或iOS设备。 TalkingData的SDK会在后台自动收集数据,你可以在 TalkingData 的开发者后台查看这些数据,如用户活跃度、留存率等关键指标。 通过以上步骤,你就可以在Unity游戏中集成TalkingData的统计分析工具,从而更好地理解玩家行为,进行有针对性的优化。记住,数据分析不仅仅是收集数据,更重要的是根据数据洞察用户需求,提升产品质量和用户体验。在后续的开发过程中,持续关注 TalkingData 提供的分析报告,及时调整策略,将有助于你的游戏获得更大的成功。
2024-08-20 15:04:23 2.71MB unity talkingdata
1
Excel·VBA考勤打卡记录统计出勤小时(附件)
2024-08-16 09:46:10 311KB 代码附件
1
在本资源包中,我们聚焦于使用MATLAB这一强大的编程环境来实现统计学习、机器学习、神经网络以及深度学习的相关算法和技术。MATLAB是工程和科学领域常用的工具,尤其在数据分析和模型构建方面表现出色。以下将详细阐述这些领域的基础知识及其在MATLAB中的应用。 一、统计学习 统计学习是数据挖掘和机器学习的基础,它涵盖了各种方法,如线性回归、逻辑回归、决策树等。在MATLAB中,可以使用内置函数如`regress`进行线性回归分析,`logistic`进行逻辑回归,或者`fitrtree`构建决策树。此外,`fitensemble`函数可以用来创建集成学习模型,如随机森林或梯度提升机。 二、机器学习 机器学习是让计算机通过数据自我学习和改进的方法。MATLAB提供了丰富的机器学习工具箱,包括支持向量机(SVM)、K近邻(KNN)、朴素贝叶斯(Naive Bayes)等。例如,`svmtrain`和`svmpredict`用于SVM分类与预测,`knnsearch`实现KNN算法,`nbclassify`则服务于朴素贝叶斯分类。 三、神经网络 神经网络是模拟人脑神经元结构的计算模型,广泛应用于图像识别、自然语言处理等领域。MATLAB的神经网络工具箱提供了构建和训练各种神经网络的能力,如前馈网络、循环网络和卷积网络。`feedforwardnet`用于创建前馈网络,`train`函数用于训练,`sim`进行网络预测。此外,深度学习工具箱支持更复杂的网络结构,如`alexnet`、`vgg16`等预训练模型。 四、深度学习 深度学习是机器学习的一个分支,通过多层非线性变换对复杂数据进行建模。MATLAB的深度学习工具箱提供了一系列的深度学习模型,如卷积神经网络(CNN)、递归神经网络(RNN)、长短期记忆网络(LSTM)等。例如,`convn`函数执行卷积操作,`lstmLayer`创建LSTM层,`trainNetwork`用于训练整个网络模型。 在资源包中,包含的源代码和数据资料将帮助用户更深入地理解并实践上述概念。通过实际操作,用户可以学习如何在MATLAB中设计、训练和优化模型,同时获取对各种算法性能的直观认识。这些实例代码不仅适用于初学者,也对有一定基础的研究人员提供了宝贵的参考资料,便于他们快速实现自己的算法并验证结果。 这个资源包是学习和研究MATLAB在统计学习、机器学习、神经网络和深度学习领域应用的理想材料,可以帮助用户提升技能,解决实际问题,并为学术研究或项目开发打下坚实基础。
2024-08-10 20:44:24 106KB matlab 机器学习 神经网络 深度学习
1