内容概要:本文档详细介绍了MediaPipe人检测项目在Linux系统上的安装、配置和运行步骤。首先讲解了通过Bazelisk安装和管理Bazel的方法,包括下载、赋予执行权限、验证安装等步骤。接着阐述了MediaPipe的三种导入或下载方式,并重点描述了如何安装OpenCV和FFmpeg,包括使用包管理器安装预编译库、从源代码构建等方法。此外,文档还涉及了CUDA或GPU加速的配置,以及C++和Python版本的“Hello World”示例的编译与运行。最后,针对常见的编译错误如GCC版本不兼容、Python路径设置错误等提供了详细的解决方案。 适合人群:具备一定Linux操作基础,对计算机视觉或机器学习领域感兴趣的开发者,尤其是希望在嵌入式设备或Linux平台上实现人检测功能的研发人员。 使用场景及目标:①帮助开发者在Linux系统上快速搭建MediaPipe人检测环境;②解决在编译和运行过程中可能出现的技术难题;③为后续深入研究MediaPipe或其他相关项目提供基础支持。 阅读建议:由于涉及到较多命令行操作和技术细节,建议读者在实际环境中跟随文档逐步操作,同时注意根据自身环境调整相关配置参数。对于遇到的问题,可以参考文档提供的常见问题解决方案,并结合自身情况进行排查和解决。
2025-07-07 15:38:25 669KB Bazel MediaPipe OpenCV GPU加速
1
这个基于Python、PyQt、OpenCV和SQLite的人识别课堂签到系统可以实现学生在课堂上的自动签到。系统的工作流程大致如下: 学生信息录入: 添加学生的姓名信息,并且可以通过摄像头采集学生的照片。 人数据处理: 利用OpenCV进行人检测和人特征提取,将学生照片中的人信息转换成特征向量。 签到功能: 在课堂上,系统会实时通过摄像头捕获学生的人图像,再利用OpenCV提取人特征向量。然后与数据库中存储的学生信息进行比对,以确定是否匹配成功。若匹配成功,则表示该学生已签到。 签到记录管理: 系统会记录每次签到信息。 界面设计: 使用PyQt来设计系统的用户界面,包括学生信息录入界面、签到界面以及结果展示界面等,使操作更加友好和直观。
2025-07-02 16:51:12 101.27MB
1
毕业设计,主要用Python+OpenCV+TensorFlow,用pyqt5做的界面,卷积神经网络设计的网络模型。运行文件是UI_start。 有数据集是我和我的室友,还有网上爬下来的。准确性不是很高。 参考了这片文章:https://blog.csdn.net/qq_42633819/article/details/81191308
2025-06-30 17:28:33 365.07MB 人脸识别
1
dlib 库是一个功能强大且应用广泛的现代化工具包,尤其在机器学习和计算机视觉领域具有重要价值。dlib 实现了众多先进的机器学习和计算机视觉算法,如支持向量机(SVM)、决策树、深度学习中的卷积神经网络(CNN)相关的组件等。研究人员可以利用这些现成的算法快速搭建实验环境,验证新的理论和想法,而无需从头开始实现复杂的算法,大大节省了时间和精力。 dlib 的开源性质使得研究人员能够深入研究其代码实现,了解算法的底层原理。这有助于他们在现有算法的基础上进行改进和创新,为相关领域的技术发展做出贡献。例如,在人检测和识别算法的研究中,dlib 提供的基础模型和工具为研究人员提供了良好的起点。 dlib 是用 C++ 编写的,具有良好的可扩展性,但直接使用pip install安装往往会失败,本资源已经cmake编译完,适用最新的python3.13版本,方便安装。
2025-06-30 13:46:42 2.79MB dlib库的whl文件 人脸识别 图像识别
1
《松翰双目人识别摄像头方案解析》 在当今数字化时代,人识别技术正逐渐渗透到我们的生活中,被广泛应用于门禁系统、手机解锁、支付验证等多个领域。本方案以"6_XJ2671A+PS5268+OV2735 +HUB.zip"为核心,详细阐述了基于松翰(Sonix)芯片的双目人识别摄像头的设计原理与实现方法。 我们要了解的是关键组件的作用。XJ2671A是松翰公司推出的一款高性能的图像信号处理器(ISP),专为高清摄像头应用设计。它集成了强大的图像处理功能,包括色彩校正、降噪、曝光控制等,能确保摄像头捕获的图像质量优异,为后续的人识别提供基础。 接着,PS5268是一款专用的图像传感器接口集成电路,用于连接OV2735图像传感器。OV2735是OmniVision科技公司的产品,是一款高性能、低功耗的全局快门CMOS图像传感器,适用于高分辨率的视觉应用。它的高分辨率和宽动态范围特性使得在不同光照条件下也能清晰捕捉人细节,是人识别的重要硬件基础。 双目摄像头则采用了两个OV2735传感器,分别模拟人眼的左右视差,通过计算两幅图像之间的差异来获取深度信息,实现立体视觉和三维人识别。这种设计能有效提高人识别的准确性和抗干扰能力,避免单一摄像头可能产生的误识别问题。 在PCB设计方面,XJ2671A和PS5268需要通过精心布局和布线,以确保信号传输的稳定性和减少电磁干扰。同时,HUB(集线器)在这里可能是用来将多个设备(如两个OV2735传感器)连接到主处理器,优化数据传输效率。在电路设计时,需考虑电源管理、信号完整性以及散热等问题,确保系统的稳定运行。 此外,为了实现人识别算法,通常还需要软件层面的支持。这可能涉及到深度学习模型的训练,如卷积神经网络(CNN),用于特征提取和人检测。同时,还需要实时处理和匹配算法,以快速准确地识别人并进行验证。 "6_XJ2671A+PS5268+OV2735 +HUB.zip"方案结合了硬件和软件的优势,构建了一个高效、可靠的双目人识别系统。通过深入理解各个组件的功能和相互作用,我们可以更好地掌握这一先进的人识别技术,并将其应用于实际场景,提升安全性与便利性。
2025-06-26 20:20:51 7.01MB 双目人脸识别 OV2735
1
从别人的java源码中提取方法视频情感检测 这项工作的目的是基于从视频中提取的人表情来识别六种情感(幸福,悲伤,厌恶,惊奇,恐惧和愤怒)。 为了实现这一目标,我们正在考虑不同种族,年龄和性别的人,他们每个人在表达情感时的React都非常不同。 我们收集了149个视频的数据集,其中包括来自男性和女性的简短视频,表达了之前描述的每种情感。 数据集是由学生建立的,他们每个人都录制了一个视频,该视频表达了所有的情感,完全没有方向或指示。 一些视频比其他视频包含更多的身体部位。 在其他情况下,视频在背景中的对象甚至具有不同的灯光设置。 我们希望它尽可能通用,没有任何限制,因此它可以很好地表明我们的主要目标。 代码detect_faces.py只是从视频中检测人,我们将该视频保存在尺寸为240x320的视频中。 使用此算法会创建不稳定的视频。 这样,我们便稳定了所有视频。 这可以通过代码完成,也可以在线免费获得稳定器。 之后,我们使用稳定的视频并将其通过代码motion_classification_videos_faces.py运行。 在代码中,我们开发了一种基于密集光流(HOF)直方图的特
2025-06-25 20:07:42 7KB 系统开源
1
用于面诊的人全景图像拼接算法 本文主要介绍了一种用于面诊的人全景图像拼接算法。该算法基于人特征的柱面投影方法,能够快速、有效地生成人全景图像,为后续中医面诊奠定了基础。 中医医生可以根据人面部的光泽和颜色,以及面部唇色的差异看出人体内部气血的运行状况。《黄帝内经》对人面部颜色、光泽的变化与其脏腑状态间的关系进行了描述。面部诊断不仅历史悠久,而且在中医临床应用中具有重要的意义,中医医生可以通过观察人的面部神色进行诊断和施治,不会引起病人任何的不适,也不会对人体造成任何的创伤。 随着中医面诊客观化研究及计算机技术的飞速发展,我们可以通过图像处理将人拼接成一个完整的具有立体感的二维图像方便医生进行快速诊断。然而,传统的人拼接算法存在一些问题,如姚嘉梁等提出的基于特征块的匹配算法配准相邻的人图像,但必须保证相邻图像重合面积足够大,且旋转角度小,此方法处理得到的图像较模糊,无法达到面诊要求。郑青碧等采用传统的利用正、侧面折线法实现人拼接,再对其进行归一化处理,这样只能机械地实现正侧面拼接,无法去除因面部角度问题带来的误差。 因此,本文提出的算法基于人特征的柱面投影方法,将人的头部近似看做一个圆柱体,有效地解决了在采集过程中因面部角度所引起的视觉不一致性。接着,利用SIFT特征匹配算法提取两幅图像的特征向量,并通过RANSAC匹配优化算法消除错误的匹配,实现图像的配准。采用渐入渐出的融合算法,使图像间实现平滑的过渡,消除拼接缝隙。 实验结果表明,本研究使用的算法能够快速、有效地生成人全景图像,为后续中医面诊奠定了基础。这项技术的发展对中医面诊的发展具有重要的意义,也为医疗器械和图像处理技术的发展提供了新的思路。 本文提出的算法能够快速、有效地生成人全景图像,解决了传统的人拼接算法存在的问题,为中医面诊奠定了基础。这项技术的发展对中医面诊的发展具有重要的意义,也为医疗器械和图像处理技术的发展提供了新的思路。
2025-06-22 16:31:36 2.74MB
1
针对具有大量卷积神经网络的图像超分辨率算法存在的参数大,计算量大,图像纹理模糊等问题,提出了一种新的算法模型。 改进了经典的卷积神经网络,调整了卷积核大小,并减少了参数; 添加池层以减小尺寸。 降低了计算复杂性,提高了学习率,并减少了培训时间。 迭代反投影算法与卷积神经网络相结合,创建了一个新的算法模型。 实验结果表明,与传统的面部错觉方法相比,该方法具有更好的性能。
2025-06-20 09:26:30 763KB 卷积网络混合算法
1
在本文中,我们将深入探讨如何使用C#进行人识别,特别是在基于虹软(ArcSoft)免费SDK的情况下。虹软是一家知名的计算机视觉技术提供商,其人识别SDK为开发者提供了强大的工具,用于集成到自己的应用中。 我们需要理解人识别的基本原理。人识别是生物识别技术的一种,它通过分析人的特征来识别或验证个人身份。虹软的SDK通常会包含图像处理、特征提取、模板匹配等核心算法,使得开发者无需深入了解这些复杂的细节,就能快速实现功能。 在C#中,虹软的SDK提供了一套易于使用的API接口。要开始开发,你需要先下载并安装SDK,然后在项目中引用相关的DLL文件。"arcfacetest"可能是SDK提供的一个示例程序或者测试工具,它可以用来测试SDK的功能并帮助我们了解如何调用API。 接下来,我们来看一下C#中如何使用虹软SDK进行人识别的步骤: 1. **初始化**: 在程序启动时,需要初始化SDK,这通常涉及到设置许可证文件路径,以及配置其他参数,如识别精度等。 2. **加载人检测模型**: SDK提供的人检测模块可以帮助我们定位图像中的人。这一步骤涉及调用`DetectFace`或类似的函数,传入图像数据,并返回人的位置信息。 3. **提取人特征**: 一旦检测到人,我们可以通过`ExtractFeature`函数提取人特征。特征提取是关键步骤,因为后续的识别过程依赖于这些特征。 4. **创建人数据库**: 对于识别任务,可能需要预先创建一个人数据库,存储已知个体的特征。这可以通过调用SDK的`AddFaceToDatabase`函数完成。 5. **人识别**: 使用`CompareFeature`或`Identify`函数进行人识别。前者比较两个特征的相似度,后者则在数据库中查找最匹配的人。 6. **处理结果**: 根据SDK返回的结果,我们可以进行相应的业务逻辑,比如显示识别结果、记录日志等。 在"说明.txt"文件中,可能会包含更具体的使用指南,如代码示例、注意事项、错误处理等。开发者应仔细阅读这份文档,以便更好地理解和应用SDK。 C#结合虹软人识别SDK能让你轻松地在Windows平台上构建人识别应用。无论是简单的面部检测还是复杂的身份验证,都有相应的API支持。不过,值得注意的是,尽管SDK是免费的,但使用过程中仍需遵循虹软的条款与条件,以及尊重用户隐私,确保合规性。在实际开发中,你可能需要根据具体需求对示例代码进行调整和优化,以满足项目需求。
2025-06-19 13:59:34 19.35MB 人脸识别
1
本内容通过opencv搭建了具备人录入、模型训练、识别签到功能的人识别签到系统,每一步的操作都进行了详细讲解,代码也经过反复调试,确保到手后便能够直接使用,特别适合新手学习、学生交课堂作业和需要项目实战练习的学习者,本资源提供售后,可在线指导直至运行成功。 在本教程中,我们将学习如何使用OpenCV和Python来构建一个功能完整的人识别签到系统。人识别技术通过分析和比较人特征来识别人的身份,这项技术在安全验证、身份识别、以及用户交互等多个领域有着广泛的应用。OpenCV是一个开源的计算机视觉和机器学习软件库,提供了大量的视觉处理功能,而Python作为一种高级编程语言,因其易读性和简洁的语法被广泛应用于初学者教育和快速原型开发。 本教程首先会介绍OpenCV的基本使用方法,如安装、配置环境以及如何调用库中的函数等。接下来,教程会详细讲解如何进行人录入,包括拍摄或导入人图像、调整图像大小以及将图像转换为灰度图等预处理步骤。此外,还会深入讲解如何使用OpenCV进行人检测,这通常涉及到级联分类器的使用,以及如何训练模型以识别特定的人。 在系统搭建的过程中,我们还会接触到图像处理的相关知识,例如特征提取、直方图均衡化以及图像二值化等技术。这些技术对于优化人识别的效果至关重要,因为它们可以提高图像的质量,使得人的特征更加突出,从而便于后续的人比对和识别。 除了录入和检测,本教程还包含了如何进行人识别的讲解。人识别通常涉及到机器学习算法,它能够从人图像中学习到模式,并在有新的人出现时,将其与已有的人数据进行比对,以此来识别身份。在本教程中,我们会使用一些简单而有效的方法,比如使用Haar级联、局部二值模式(LBP)和深度学习等技术。 在实现签到功能时,系统将能够记录识别到的人信息,并与数据库中的信息进行匹配,从而完成签到。这个过程可能需要连接数据库系统,比如SQLite或MySQL,以存储和查询人数据。教程中将提供必要的代码示例和解释,帮助理解如何建立这样的功能。 教程还提供售后服务,解决在系统搭建和运行中可能遇到的任何问题。这为初学者和需要进行项目实战练习的学习者提供了巨大的帮助,因为实践中遇到的问题往往需要专业人士的指导才能有效解决。 这个教程是面向那些对人识别技术感兴趣的学习者,特别是对于那些希望在项目中应用这种技术的新手或学生来说,是一个宝贵的资源。它不仅可以帮助他们构建实际可用的系统,还能加深对计算机视觉和机器学习的理解。
2025-06-17 19:24:57 565KB python opencv 人脸识别
1