在本学习笔记中,我们将深入探讨如何在STM32 F103C8T6微控制器上使用AHT10温湿度传感器模块。STM32系列是基于ARM Cortex-M3内核的微控制器,广泛应用于嵌入式系统设计,而AHT10是一款高精度、低功耗的温湿度传感器,常用于环境监测和智能家居设备。 我们来了解AHT10的基本特性。AHT10由ams公司生产,它能够提供0.1°C的温度精度和2%RH的湿度精度,具有快速响应和良好的长期稳定性。该传感器通过I2C接口与主控器通信,这使得在STM32上实现数据读取变得简单。 在STM32开发过程中,你需要配置STM32的I2C接口。这通常包括设置GPIO引脚为I2C模式,配置时钟分频器,以及使能I2C外设。F103C8T6有多个可用的I2C接口(如I2C1或I2C2),你可以根据硬件连接选择合适的接口。记得为SDA和SCL引脚配置适当的Pull-up电阻。 接着,你需要编写I2C通信协议的代码。STM32的HAL库提供了方便的API函数来发送和接收数据,如`HAL_I2C_Master_Transmit()`和`HAL_I2C_Master_Receive()`。通过这些函数,你可以向AHT10发送命令并读取其返回的数据。AHT10的操作包括初始化、读取温度和湿度、校准等,每种操作都有特定的命令序列。 在初始化阶段,你需要向AHT10发送特定的配置命令以设置工作模式。AHT10有单次测量和连续测量两种模式,根据应用需求选择合适的模式。之后,可以调用读取命令来获取传感器数据,数据通常以32位字节格式返回,包括两个16位的温度和湿度值。 解析AHT10返回的数据时,需要注意字节顺序和位转换。温度和湿度值分别存储在4个字节中,需要正确地组合和转换为十进制数值。这可能涉及到位移和位与操作。同时,AHT10返回的数据还包含一个校验和,用于检查数据传输的准确性。 在实际应用中,你可能还需要考虑错误处理和中断处理。例如,如果I2C通信超时或数据校验失败,应有相应的错误处理机制。另外,可以使用STM32的中断功能来实时响应AHT10的测量完成事件,提高系统的响应效率。 对于嵌入式系统,优化电源管理也是关键。AHT10具有低功耗特性,可以通过设置命令使其进入待机模式以节省电能。在不需要连续测量的情况下,关闭I2C接口或降低系统频率也能进一步降低功耗。 总结,使用STM32 F103C8T6与AHT10温湿度传感器的集成涉及STM32的I2C接口配置、I2C通信协议编程、数据解析以及错误和电源管理策略。通过理解这些知识点,你将能够成功地在STM32项目中集成并利用AHT10传感器,实现精确的环境监控功能。
2024-08-12 13:57:29 6.12MB stm32
1
基于Android 源码13 编译出来的 framework.jar
2024-08-11 00:13:28 14.01MB framework android
1
亲测好用的音效处理软件FxSound Enhancer,效果明显,目前13.0.27是最新的了,并已中文破解
2024-08-09 12:01:16 3.47MB
1
vmprotect 2.13.3 正版,带授权,非破解版,官方版本,放心使用
2024-07-23 17:26:06 61.15MB vmprotect
1
具有电弱矢量玻色子和许多射流的签名在大型强子对撞机中起着至关重要的作用,无论是在测量标准模型参数还是在寻找新的物理学方面。 因此,对于这些多尺度过程的精确预测是必不可少的。 我们提出了在s = 13 TeV时W±/ Z +喷射的次于领先的QCD预测,包括在最终状态下的多达五个/四个喷射。 包括所有生产通道,并且在振幅水平上考虑了矢量玻色子的轻子衰变。 我们通过考虑基于HT变量以及MiNLO程序的固定阶动态标度,来评估因重归一化和因子分解标度依赖性而产生的理论不确定性。 我们还探索了与parton-distribution函数的不同选择相关的不确定性。 我们提供可以通过BlackHat与Sherpa结合生成的公共n元组集进行探索的事件样本。
2024-07-18 20:02:10 1.6MB Open Access
1
Altera_QuartusII_13.0_Windows_Crack破解文件 Altera_QuartusII_13.0_Windows_Crack破解文件
2024-07-11 09:46:14 27KB Altera QuartusII 13.0 Crack
1
**SVN客户端详解** SVN(Subversion)是一款开源的版本控制系统,用于管理软件项目中的文件和目录。它允许团队协作开发,跟踪每一次修改,回滚到任何历史版本,并实现分支管理和合并。SVN Client是SVN系统中的客户端工具,为用户提供了与SVN服务器交互的界面。 本压缩包中的"SVN Client-1.13.1.28686-x64.msi.7z"是指SVN的1.13.1版本,构建号28686,专为64位Windows操作系统设计的客户端安装程序。"TortoiseSVN-1.13.1.28686-x64.msi"是其中包含的实际安装文件,TortoiseSVN是一款非常流行的SVN客户端,它作为一个Windows Shell扩展集成在文件资源管理器中,使得用户可以通过右键菜单进行版本控制操作。 **TortoiseSVN介绍** TortoiseSVN以其直观的图形用户界面和丰富的功能而闻名。以下是一些主要特性: 1. **右键菜单集成**:在Windows资源管理器中,用户可以直接对文件或文件夹执行SVN操作,如添加、提交、更新、查看日志、比较版本等。 2. **图形化差异查看**:TortoiseSVN可以显示两个版本之间的文件差异,以颜色高亮显示不同之处,方便用户理解和处理冲突。 3. **冲突解决**:当多个用户修改了同一部分代码时,TortoiseSVN提供了一个图形化的冲突解决工具,帮助用户解决合并问题。 4. **分支和标记**:TortoiseSVN支持创建分支和标记,使得项目可以根据需求进行独立开发和版本维护。 5. **历史记录**:用户可以查看文件或目录的历史版本,了解每个版本的更改细节。 6. **URL挂载**:TortoiseSVN允许用户将SVN仓库挂载为虚拟驱动器,方便直接访问和操作。 **在Windows 7/10上安装和使用TortoiseSVN** 1. **下载和解压**:你需要从官方网站或可靠来源下载TortoiseSVN的安装包,然后使用7-Zip或其他解压缩工具解压。 2. **安装过程**:运行解压后的"TortoiseSVN-1.13.1.28686-x64.msi"文件,按照向导提示进行安装。选择合适的安装路径和语言,确保勾选“添加到右键菜单”选项。 3. **配置SVN客户端**:安装完成后,你可能需要配置SVN的服务器地址和认证信息,这些可以在TortoiseSVN的设置中完成。 4. **开始使用**:现在你可以打开Windows资源管理器,选择一个文件或文件夹,右键点击并探索SVN提供的各种功能。 5. **版本控制操作**:通过TortoiseSVN,你可以进行版本控制的基本操作,如“Checkout”(检出)来获取最新代码,“Commit”(提交)来保存你的更改,“Update”(更新)来获取团队的最新变更,“Merge”(合并)来整合分支的代码。 TortoiseSVN作为SVN的客户端,为开发者提供了高效、便捷的版本控制体验,尤其适合Windows环境下的开发团队协作。其易用性和强大的功能使其成为许多开发者的首选工具。通过正确安装和使用,你可以更好地管理和协同你的代码项目。
2024-07-09 11:08:49 18.98MB SVN客户端 SVN Client windows
1
据报道,由CMS实验记录的质子-质子碰撞在s = 13 TeV处对应于2.6 fbâ1的综合光度,搜索到包含四个最高夸克(tt'tt)的事件。 分析考虑了单轻子(e或¼)+喷射和相反符号的双轻子(ε+¼,ε±e或e + e)+喷射通道。 它使用增强的决策树来组合有关全球事件和喷气机特性的信息,以区分tt和tt生产。 在所有选择要求之后观察到的事件数量与背景和标准模型信号预测中的预期一致,并且在95%置信水平下在94 fb的标准模型中tt的生产截面上设置了上限( 10.2×预测值),预期限制为118 fb。 这与来自发布的CMS搜索在相同符号的Dilepton通道中结合的结果,在95%的置信度(7.4×预测)下,改进的限制为69 fb,预期的限制为71 fb。 这些是迄今为止tt产量的最大约束。
2024-07-05 23:13:57 876KB Open Access
1
使用CMS实验在2016年收集的数据,在s = 13 $$ \ sqrt {s} = 13 $$ TeV的质子-质子碰撞中,对最终状态中包含光子和横向动量缺失的新物理学进行了搜索。 LHC,对应的综合光度为35.9 fb-1。 没有发现与标准模型的预测有偏差。 在暗物质产生和包含额外空间尺寸的模型的背景下解释了结果,并以95%的置信度计算了对新物理参数的限制。 对于所考虑的两个简化的暗物质生产模型,对于1 GeV暗物质,所观察到的(预期)介体质量的下限均为950(1150)GeV。 对于有效的电弱-暗物质接触相互作用,抑制参数Λ的观察到的(预期的)下限是850(950)GeV。 对于3到6个额外的空间尺寸,不包括有效的Planck比例尺值(最高2.85–2.90 TeV)。
2024-07-05 22:14:25 1.76MB Open Access
1
在s = 13 $$ \ sqrt {s} = 13 $$ TeV的质子-质子碰撞中,寻找一个最终状态的新物理,该状态包含光子和缺失的横向动量。 通过CERN LHC的CMS实验收集的数据对应于12.9 fb -1的综合光度。 相对于标准模型的预测没有观察到偏差。 结果被解释为包含额外空间尺寸的模型中暗物质产生截面和参数的排除极限。 针对使用单光子最终状态的先前搜索设置了改进的限制。 特别是,在此渠道中,迄今为止,对额外维度模型参数的限制最为严格。
2024-07-05 21:06:40 1.07MB Open Access
1