内容概要:本文详细介绍了基于MATLAB构建的双机并联自适应虚拟阻抗下垂控制仿真模型。该模型涵盖了下垂控制、电压电流双环控制和锁相环三大关键技术模块。下垂控制通过调节逆变器输出电压的幅值和频率实现功率合理分配;电压电流双环控制确保逆变器输出高质量电能;锁相环用于跟踪电网电压的相位和频率,确保逆变器输出电压与电网电压同步。文中提供了详细的MATLAB代码示例,展示了各个模块的工作原理和实现方法,并强调了模型的扩展性和实用性。 适合人群:从事电力系统研究、分布式发电系统设计的专业人士和技术爱好者。 使用场景及目标:①研究双机并联自适应虚拟阻抗下垂控制的原理和实现方法;②优化逆变器输出质量,减少环流震荡;③提高系统的动态响应性能,确保可靠并网运行。 其他说明:该模型适用于MATLAB2018b及以上版本,建议安装Simscape Electrical工具箱。仿真过程中应注意步长设置和参数调整,以获得最佳效果。
2025-06-28 15:42:44 628KB MATLAB 锁相环
1
内容概要:本文详细介绍了基于虚拟阻抗电压负反馈的并联下垂控制仿真模型的构建方法和技术细节。首先解释了并联下垂控制的基本概念及其在电力系统中的重要性,然后重点探讨了虚拟阻抗的作用以及如何通过电压负反馈机制提升系统的稳定性和动态响应速度。接着,文章逐步讲解了如何利用MATLAB 2021a搭建仿真模型的具体步骤,包括创建电源模型、构建并联系统、引入虚拟阻抗、添加控制算法以及运行仿真的全过程。最后给出了一个简单的MATLAB代码示例,展示如何实现虚拟阻抗电压负反馈与并联下垂控制相结合的技术方案。 适用人群:从事电力电子、自动化控制领域的研究人员、工程师和技术爱好者。 使用场景及目标:适用于希望深入理解并联下垂控制原理及其改进措施的研究人员,特别是那些希望通过仿真手段验证理论假设的人群。此外,对于想要掌握MATLAB仿真技能的专业人士来说也是一个很好的学习材料。 其他说明:文中提供的技术文档非常详尽,不仅包含完整的仿真流程介绍,还有详细的公式推导和Visio绘制的图表,有助于读者更好地理解和应用相关技术。
2025-06-28 15:42:02 418KB
1
内容概要:本文详细介绍了基于MATLAB的双机并联自适应虚拟阻抗下垂控制仿真实现方法。首先解释了传统下垂控制存在的功率分配不均和环流问题,然后引入了自适应虚拟阻抗的概念及其在MATLAB中的具体实现。文中展示了完整的MATLAB代码片段,涵盖了下垂控制、电压电流双环控制以及改进型SOGI-PLL锁相环的设计。通过对比实验验证了自适应虚拟阻抗的有效性,使得两台逆变器并联后的功率分配误差小于3%,环流峰值低于额定电流的5%,并且在负载突变情况下表现出良好的动态性能。 适用人群:适用于具有一定MATLAB编程基础和技术背景的研究人员、工程师,特别是从事电力电子、微电网控制领域的专业人士。 使用场景及目标:①用于研究和开发微电网中多逆变器并联系统的控制策略;②帮助理解和掌握自适应虚拟阻抗的工作原理及其优势;③提供实际应用案例供教学演示或工程项目参考。 其他说明:文中提供了详细的代码示例和调试建议,强调了仿真过程中需要注意的关键点,如仿真步长的选择、参数整定技巧等。同时附上了相关参考文献以便进一步深入学习。
2025-06-28 14:05:03 1.34MB
1
基于线控转向技术的CarSim与Simulink联合仿真模型研究:涵盖增益传动比模块与电机控制策略等元素的详细解析与应用指南,线控转向CarSim与Simulink联合仿真模型。 模型包括定横摆角速度增益变传动比模块、永磁同步电机FOC控制策略模型以及CarSim输入、输出Cpar文件等。 该模型仅供参考使用 ,线控转向; CarSim; Simulink联合仿真模型; 定横摆角速度增益; 传动比模块; 永磁同步电机FOC控制策略模型; CarSim输入输出; Cpar文件。,线控转向CarSim与Simulink联合仿真模型:增益传动与电机控制整合
2025-06-27 22:55:12 498KB
1
基于Cadence的两级运算放大器设计,TSMC18工艺,增益87dB,单位增益带宽积达30MHz的仿真及版图验证,基于Cadence的两级运算放大器设计,工艺TSMC18,增益、带宽积与压摆率卓越,原理图仿真状态良好,版图通过DRC与LVS验证,两级运算放大器设计 cadence 电路设计 工艺tsmc18 低频增益87dB 相位裕度80 单位增益带宽积GBW 30MHz 压摆率 116V us 原理图带仿真状态 有版图过DRC lvs ,两级运算放大器设计; cadence电路设计; tsmc18工艺; 低频增益; 相位裕度; GBW; 压摆率; 原理图仿真; 版图DRC; lvs。,基于TSMC18工艺的两级运算放大器设计:高GBW与低相位噪声
2025-06-27 21:48:58 8.89MB rpc
1
在本文中,我们将深入探讨如何使用西门子的TIA Portal 15.1集成自动化工具,特别是博图(TIA Portal)中的WinCC Professional与PLCSIM进行Profibus-DP通信,以便进行组态仿真工程。这个过程适用于配置一个使用315-2DP CPU的S7-300 PLC系统。我们将详细解析每个步骤,帮助读者理解并掌握这一关键的工业自动化技能。 我们需要了解Profibus-DP。Profibus(Process Field Bus)是用于工业自动化的一种全球标准现场总线系统,而DP(Decentralized Peripherals)是Profibus的一个子系统,主要用于I/O设备和分布式站点之间的高速通信。315-2DP CPU是西门子S7-300系列中支持Profibus-DP通信的处理器。 1. **安装与配置TIA Portal**: - 安装西门子TIA Portal 15.1,确保所有必要的组件都已包含,如Step 7、Simatic Manager和WinCC。 - 创建一个新的项目,选择适当的硬件配置,包括315-2DP CPU和WinCC Professional。 2. **配置PLC**: - 在Step 7中,为315-2DP CPU分配Profibus-DP接口,并设置DP参数,如站地址、波特率和诊断参数。 - 编程PLC逻辑,使用SCL或Ladder Diagram(LD)语言定义Profibus-DP通信协议,例如定义输入/输出数据的映射和处理。 3. **配置WinCC Professional**: - 在WinCC工程中,创建新的变量表,定义与PLC通信的变量,这些变量将在人机界面(HMI)上显示和操作。 - 配置通信驱动,选择“SIMATIC S7”并指定与315-2DP CPU的连接参数,包括Profibus-DP的站地址。 4. **建立连接**: - 在TIA Portal中,通过“Online & Diagnostics”连接到PLCSIM仿真器,确保PLCSIM已配置为模拟315-2DP CPU和相关的Profibus-DP设备。 - 在PLCSIM中启动仿真,检查PLC程序是否正确运行,无错误或警告。 5. **进行仿真**: - 在WinCC Professional中,启动HMI,监控和操作通过Profibus-DP与PLCSIM通信的变量。 - 调试和测试HMI的交互,确保数据的准确传输和处理。 6. **优化与调试**: - 使用TIA Portal的诊断功能,监控Profibus-DP的通信状态,查找并解决可能出现的问题。 - 根据需要调整通信参数,优化数据传输速度和稳定性。 通过以上步骤,我们能够成功地在TIA Portal 15.1的环境中,利用博图WinCC Professional与PLCSIM进行Profibus-DP通信,实现S7-300 PLC的组态仿真。这个过程对于学习和实践工业自动化系统的开发与调试至关重要,有助于提升工程师的技能和效率。在实际工程应用中,这样的仿真技术可以有效减少硬件成本,提高项目的测试和验证质量。
2025-06-27 20:09:24 19.19MB 网络 网络
1
内容概要:本文探讨了基于线性自抗扰LADRC控制的虚拟同步发电机(VSG)预同步离网并网切换仿真模型。通过引入LADRC控制方法,增强了VSG系统的鲁棒性,减少了并网时的冲击电流,并提高了功率跟随速度和频率波动抑制能力。文中详细介绍了传统VSG预同步并网的过程及其局限性,并展示了加入LADRC控制策略后的改进效果。仿真结果显示,LADRC控制使得VSG输出电压波形更快地与电网电压同步,从而实现了更迅速和平稳的并网。 适合人群:从事电力系统研究、电力电子技术和控制系统设计的专业人士,尤其是关注VSG和LADRC控制领域的研究人员和技术人员。 使用场景及目标:适用于需要优化VSG并网性能的研究项目和实际工程应用。主要目标是提高VSG系统的鲁棒性和稳定性,特别是在应对负载突变和电网波动的情况下。 其他说明:文中还提供了详细的仿真分析,通过对比传统VSG和加入LADRC控制后的输出变化,验证了新控制策略的有效性。未来有望进一步探索更多先进的控制算法应用于VSG系统。
2025-06-27 16:59:10 2.27MB
1
1.1 设计要求 1、设计抢答电路。允许8人参加,并有锁定功能;用数码管显示最先回答的人的号码;并设置清除键,能让数码管清零灭灯。 1.2 设计目的 通过这次课程设计,了解简单多功能数字电路抢答器的组成原理,初步掌握数字电路抢答器的调整及测试方法,提高思考能力和实践能力。同时通过本课题设计,巩固已学的理论知识,建立逻辑数字电路的理论和实践的结合,了解多功能抢答器各单元电路之间的关系及相互影响,从而能正确设计、计算定时计数的各个单元电路。初步掌握多功能抢答器的调整及测试方法。 1.3 设计内容 本系统采用模块化设计智能抢答器,在抢答比赛中广泛应用,各组分别有一个抢答按钮。主持人有复位键。主持人按键开始后,选手开始抢答为有效,数码显示屏显示抢答选手号,主持人可按键结束,新一轮抢答开始。 通过研究并在设计后发现,采用数字电路技术设计的抢答器与目前常用的抢答器相比,首先,电路连接简单,因为大多数功能单元都能通过数字电路完成,第二,工作性能可靠,抗千扰能力优于目前抢答器。所以本研究是一个实用的工程设计,具有创新性。
2025-06-27 16:58:34 555KB 八路抢答器 抢答器设计
1
三相SVPWM整流器仿真与双闭环PI控制:电压外环与电流内环的讲解,输出电压调节至700V,单位功率因数运行及负载实验详解。,三相SVPWM整流器仿真讲解:双闭环PI控制实现单位功率因数运行与负载实验,三相电压型SVPWM整流器仿真matlab simulink,双闭环pi PI控制(电压外环电流内环),输出电压700V,(可自行调节)单位功率因数1运行,含负载实验。 资料讲解。 ,三相电压型SVPWM整流器;Matlab Simulink仿真;双闭环PI控制;单位功率因数运行;负载实验。,Matlab Simulink仿真:三相电压型SVPWM整流器双闭环PI控制策略与实践
2025-06-27 16:13:13 3.48MB
1
三相电压型SVPWM整流器仿真,以电压外环和电流内环控制,双闭环PID控制,输出电压600V。 三相电压型SVPWM整流器仿真,以电压外环和电流内环控制,双闭环PID控制,输出电压600V 三相电压型SVPWM整流器仿真,以电压外环和电流内环控制,双闭环PID控制,输出电压800V(可自行调节),单位功率因数运行,包含变负载仿真实验。 三相全控单极性桥式整流电路设计与matlab仿真 三相全控svpwm整流simulink 有报告讲解 在当今电气工程领域,三相电压型SVPWM(Space Vector Pulse Width Modulation,空间矢量脉宽调制)整流器是一项重要的技术,广泛应用于电力电子设备中。SVPWM技术以其高效率、高功率因数和低谐波含量的特性,成为现代电力系统中不可或缺的组成部分。本文将从多个角度深入探讨三相电压型SVPWM整流器的设计与仿真,包括电压外环与电流内环的双闭环PID控制策略,以及变负载仿真实验等。 三相电压型SVPWM整流器通过其先进的调制技术,能够有效控制电力系统中的交流电转换成直流电。在此过程中,电压外环与电流内环的双闭环PID控制策略起到了关键作用。电压外环负责维持系统输出的稳定性,而电流内环则确保了电流的精确控制,两者相辅相成,共同实现系统对电压和电流的精确调控。这种控制策略不仅提高了整流器的运行效率,还提升了系统的动态响应速度,保证了输出电压的稳定性,即使在负载变化的情况下也能保持稳定输出。 在实际应用中,三相电压型SVPWM整流器的输出电压往往要求达到600V,这对于设计和仿真提出了更高的要求。设计者需要考虑到整流器的各个组件参数和系统的整体性能,通过仿真来验证设计的正确性和可行性。同时,输出电压的调节也是设计中的一个关键点,可以通过改变PID控制参数来实现输出电压的精确调整,如文中所述输出电压可达800V(可自行调节)。 此外,三相全控单极性桥式整流电路设计与仿真也是研究的重点之一。单极性桥式整流电路通过将交流电压转换为直流电压,是电力电子系统中不可或缺的基础电路。设计该电路时,需要确保电路的可靠性和效率,而仿真则提供了一个有效的验证工具,使设计人员能够在实际制造和应用之前预测电路的性能。 在仿真软件方面,MATLAB/Simulink作为一个强大的仿真工具,被广泛应用于三相电压型SVPWM整流器的仿真设计中。通过MATLAB/Simulink,研究人员可以方便地建立模型,模拟实际运行情况,并通过仿真结果进行参数调整和性能优化。同时,相关的仿真报告和文档,如本文档列表中的“标题三相电压型整流器的设计与仿真摘要本文”和“三相电压型整流器仿真分析随着电力电子技术的飞速发展.txt”,为理解整个设计和仿真流程提供了详实的理论基础和实验数据。 对于变负载仿真实验,这是评估整流器在不同工作条件下的性能的重要环节。变负载仿真实验能够模拟实际应用中可能出现的各种负载情况,从而测试整流器在不同负载下的稳定性和响应能力。这对于设计高可靠性电力系统至关重要。 三相电压型SVPWM整流器的设计与仿真涉及到众多电力电子学的理论知识和工程实践。通过对电压外环与电流内环的双闭环PID控制策略、输出电压调节、三相全控单极性桥式整流电路设计以及变负载仿真实验等多个方面的深入研究,可以设计出性能优异、可靠性高的整流器,满足现代电力系统的发展需求。
2025-06-27 16:12:44 1.4MB csrf
1