这是一个基于 Selenium 的自动化抢票脚本,支持在 Android 和 iOS 设备上运行。脚本用于在大麦网上抢购门票并完成支付宝支付,支持日志记录和滑块验证。
2025-04-20 12:20:13 6KB 脚本
1
numpy手写BP神经网络-分类问题
2025-04-17 15:22:23 15KB
1
基于BP神经网络预测波士顿房价.7z,包含全部源代码,以及代码训练结果
2025-04-16 20:05:59 167KB 神经网络
1
实现一个MATLAB水果识别和分级系统可以通过以下步骤来进行: 1. 数据收集:收集不同种类的水果图片数据集,包括苹果、香蕉、橙子等。可以使用现有的公开数据集,也可以自己拍摄并标注数据集。 2. 数据预处理:对数据集进行预处理,包括图像大小调整、灰度化、标准化等操作,确保数据集的一致性和可用性。 3. 特征提取:利用图像处理技术提取水果图片的特征,例如颜色直方图、纹理特征、形状特征等。 4. 分类模型训练:选择合适的机器学习或深度学习算法,如支持向量机(SVM)、卷积神经网络(CNN),使用预处理后的数据集训练分类模型。 5. 模型评估:使用测试集对训练好的分类模型进行评估,评估模型在水果识别和分级任务上的性能表现。 6. 系统集成:将训练好的分类模型集成到MATLAB应用程序中,实现水果识别和分级系统的功能。 通过以上步骤,可以实现一个基于MATLAB的水果识别和分级系统,帮助用户识别不同种类的水果并进行分类。
2025-04-15 10:38:17 812KB MATLAB水果识别 MATLAB水果分级
1
内容概要:本文详细介绍了合成孔径雷达(SAR)成像技术中的三维后向投影(BP)算法及其MATLAB实现。文章首先解释了SAR成像的基本原理和三维BP算法的作用,接着通过具体的MATLAB代码展示了如何生成点目标回波数据、进行距离向脉冲压缩、执行三维BP算法处理,并最终完成三维与二维绘图展示成像结果。文中还特别强调了三维BP算法相较于传统二维BP算法的优势,即在高度向与方位向联合处理,提供更为精准的三维目标信息。 适合人群:对SAR成像技术和三维BP算法感兴趣的科研人员、学生以及相关领域的工程师。 使用场景及目标:适用于研究和教学环境,帮助理解和掌握SAR成像技术的具体实现过程,特别是三维BP算法的原理和应用。通过动手实践,加深对SAR成像的理解,为后续的研究打下坚实的基础。 其他说明:文章不仅提供了详细的理论讲解,还包括完整的MATLAB代码示例,便于读者跟随教程一步步实现SAR成像的全过程。此外,文中提到的技术在地形测绘和自动驾驶等领域有着广泛的应用前景。
2025-04-14 23:27:39 1.1MB
1
MATLAB中BP神经网络的火焰识别是一个利用人工神经网络理论建立起来的模拟生物神经网络处理信息的模型,广泛应用于模式识别、信号处理、数据分类等多个领域。BP神经网络(Back Propagation Neural Network)是一种按误差逆传播算法训练的多层前馈神经网络,能够进行复杂函数逼近,学习和存贮大量的输入-输出模式映射关系,无需精确的数学描述。 在火焰识别的应用场景中,BP神经网络可以通过学习大量的火焰图像特征来实现对火焰的准确识别。该过程通常包括以下几个步骤: 1. 数据采集:首先需要收集足够数量的火焰图像数据作为训练样本。这些数据可以是不同环境、不同光照、不同火焰形状和大小的图片。 2. 图像预处理:对收集到的图像进行预处理操作,包括灰度化、滤波去噪、归一化、边缘检测等,以降低图像的复杂度并提取出有用的特征。 3. 特征提取:从预处理过的图像中提取火焰的特征,如颜色、纹理、形状等。这些特征将作为神经网络的输入。 4. 网络训练:使用提取的特征和对应的标签(是否为火焰)来训练BP神经网络。网络将通过不断调整内部权重和偏置,以最小化输出和目标之间的误差。 5. 模型评估:通过测试集评估训练好的BP神经网络模型的性能,确保其具有良好的泛化能力。 6. 实时识别:将训练好的模型部署到实际应用中,对实时采集的图像进行处理,判断是否存在火焰并作出相应反应。 在MATLAB环境中,可以利用其提供的神经网络工具箱(Neural Network Toolbox)来实现BP神经网络的构建、训练和测试。MATLAB的图形用户界面(GUI)功能则能够使用户更直观地进行操作,如调整网络结构、设置参数等,从而更高效地完成火焰识别系统的开发。 此外,MATLAB还提供了图像处理工具箱(Image Processing Toolbox),支持各种图像处理函数和工具,极大地简化了图像预处理和特征提取的复杂度。这些工具箱的协同使用,使得MATLAB成为进行图像识别和模式识别研究和应用开发的理想平台。 MATLAB中BP神经网络的火焰识别是一个结合了图像处理技术和机器学习算法的综合性技术,能够有效地应用于火焰检测和监控领域,提高火灾预防和应急处理的智能化水平。
2025-04-14 19:16:09 7.62MB matlab
1
在新能源技术领域,光伏和风电作为清洁可再生能源的代表,其发电效率的优化一直是研究热点。最大功率点跟踪(MPPT)技术是一种提高光伏发电系统能量转换效率的关键技术,它的基本原理是通过实时调整光伏阵列的工作点,使其始终在最大功率点工作。MPPT技术的核心在于算法的选择与实现,遗传算法(GA)和粒子群优化(PSO)算法是两种在MPPT控制策略中广泛应用的智能优化算法。 遗传算法(GA)是一种模拟生物进化过程的搜索算法,它通过选择、交叉和变异等操作,在问题的解空间中进行搜索,以寻找最优解。在MPPT的应用中,遗传算法能够对光伏系统的输出特性进行全局搜索,从而找到更接近最大功率点的占空比设置。与传统的爬山法等局部搜索策略相比,遗传算法能够在更广泛的搜索空间内进行优化,避免陷入局部最优。 粒子群优化(PSO)算法是一种群体智能优化算法,灵感来源于鸟群捕食的行为。在PSO算法中,每个粒子代表问题空间中的一个潜在解,粒子们通过相互之间的信息共享,在解空间中协同搜索最优解。在MPPT控制策略中,粒子群优化算法能快速追踪环境变化下的最大功率点,并且算法实现简单,参数调整方便,适合于实时动态变化的系统。 在线优化有源程序的实现,是指将MPPT控制策略编程实现,并通过仿真软件如Matlab/Simulink进行模拟,以验证算法的有效性。Matlab/Simulink作为一种强大的数学计算和系统仿真平台,提供了丰富的工具箱支持电力电子和控制系统的建模、仿真和分析。基于Matlab/Simulink开发MPPT控制策略,可以方便地进行算法设计和验证,提高了研究与开发的效率。 在文件名称列表中,“基于GA和PSO进行MPPT控制”和“Mppt-system-main”暗示了文件内容主要围绕遗传算法和粒子群优化算法在MPPT控制中的应用。文件可能包含GA和PSO算法的具体实现代码、MPPT控制器的设计与仿真模型以及优化结果的分析。参考文献的完整性则表明开发者不仅提供了程序和仿真模型,还提供了详细的理论依据和文献支持,有助于理解算法原理和进一步的学术研究。 该文件内容涉及了智能优化算法在新能源领域的应用、基于Matlab/Simulink的仿真技术以及MPPT控制策略的详细实现。这些内容对于从事新能源发电系统研究与开发的专业人员具有很高的实用价值和参考意义。
2025-04-11 21:47:00 57.76MB matlab MPPT simulink
1
内容概要:文章介绍了基于Matlab的PSO-LSTM(粒子群算法优化长短期记忆神经网络)实现多输入分类预测的完整流程。针对大数据时代背景下金融、医疗、能源等行业面临的多变量时序数据分析挑战,传统机器学习方法难以有效捕捉数据间的时序依赖性和长期依赖关系。LSTM虽能很好应对长期依赖性问题,却因自身超参数优化难题限制性能发挥。为此,文中提出了融合PSO与LSTM的新思路。通过粒子群优化算法自动化选取LSTM的最优超参数配置,在提高预测精度的同时,加速模型训练过程。项目详细展示了该方法在金融预测、气象预报等多个领域的应用前景,并用具体代码实例演示了如何设计PSO-LSTM模型,其中包括输入层接收多输入特征、经由PSO优化超参数设定再进入LSTM层完成最终预测输出。 适用人群:从事机器学习、深度学习研究的专业人士或研究生,尤其是专注于时间序列数据挖掘以及希望了解如何利用进化算法(如PSO)优化神经网络模型的研究人员。 使用场景及目标:①对于具有多维度时序特性的数据集,本模型可用于精准分类预测任务;②旨在为不同行业的分析师提供一种高效的工具去解决实际问题中复杂的时变关系分析;③通过案例代码的学习使开发者掌握创建自己的PSO-LSTM模型的技术,从而实现在各自专业领域的高准确性预测。 其他说明:需要注意的是,在具体实施PSO-LSTM算法过程中可能会遇到诸如粒子群算法的收敛问题、LSTM训练中的梯度管理以及数据集质量问题等挑战,文中提及可通过改进优化策略和加强前期准备工作予以解决。此外,由于计算成本较高,还需考虑硬件设施是否足够支撑复杂运算需求。
2025-04-09 19:51:50 35KB 粒子群优化 Long Short-Term Memory
1
基于GA-BP多变量时序预测的优化算法模型——代码文注释清晰,高质量多评价指标展示程序,GA-BP神经网络优化多变量时序预测模型:基于遗传算法的BP神经网络多维时间序列预测程序,GA-BP多变量时序预测,基于遗传算法(GA)优化BP神经网络的多维时间序列预测,多输入单输出 程序已经调试好,无需更改代码替数据集即可运行数据为Excel格式。 1、运行环境要求MATLAB版本为2018b及其以上 2、评价指标包括:R2、MAE、MBE、RMSE等,图很多,符合您的需要 3、代码文注释清晰,质量极高 4、测试数据集,可以直接运行源程序。 替你的数据即可用 适合新手小白 ,关键词:GA-BP多变量时序预测; 遗传算法优化BP神经网络; 多维时间序列预测; 多输入单输出; MATLAB版本2018b; 评价指标(R2, MAE, MBE, RMSE); 代码文注释清晰; 测试数据集; 新手小白。,基于GA-BP算法的多变量时序预测模型:高注释质量、测试数据集直接可用
2025-04-07 16:40:16 2.42MB
1
内容概要:本文详细介绍了一个利用MATLAB实现的遗传算法(GA)优化BP神经网络的方法,专门面向多输入多输出系统的建模和预测任务。遗传算法以其全局搜索能力解决了BP神经网络容易陷入局部最优的问题,两者结合大大提升了学习速度和精度。文中阐述了BP神经网络和遗传算法的基本原理,并介绍了两者相结合的技术细节及其在MATLAB平台上的实现方式。特别指出的是,在实现过程中遇到了一些技术和理论上的挑战,并通过合理的参数调整和结构优化逐一攻克。 适合人群:具备基本编程技能以及对人工神经网络有一定了解的研究人员、工程师和技术爱好者,特别是关注于复杂系统和大数据分析的专业人士。 使用场景及目标:主要用于需要高效建模及精确预测的复杂多维系统中,比如系统控制、金融数据分析、医学诊断、图像识别等众多行业领域内的问题解决。目的是提高系统的自动化程度,改善预测准确率,并促进更广泛的智能化管理和服务应用。 其他说明:为了帮助读者更好地理解这一过程,文档还提供了详细的模型架构图示和具体的实例编码指导,从数据准备到最终的仿真结果显示全过程。并且强调了项目所具有的创新点,比如自定义参数设定、智能优化初始权重等特性,使得该方案在实际操作中有较强的灵活性和适用性。同时指出未来可以进一步探索更多元化的优化手段和技术融合可能性。
2025-04-05 09:07:05 32KB 遗传算法 BP神经网络 MATLAB 智能优化
1