基于yolov5算法的深度学习目标检测程序。YOLOV5:You Only Look Once目标检测模型在pytorch当中的实现(edition v5.0 in Ultralytics)支持多GPU训练,新增各个种类目标数量计算,新增heatmap;将正样本匹配过程加入dataloader,加快了运算速度;加入EMA效果变好。 2022-02:仓库创建,支持不同尺寸模型训练,分别为s、m、l、x版本的yolov5、支持step、cos学习率下降法、支持adam、sgd优化器选择、支持学习率根据batch_size自适应调整、新增图片裁剪。
2023-11-07 11:57:50 926.92MB pytorch pytorch 深度学习 目标检测
1
Halcon深度学习-企业项目实战(核酸管外观缺陷检测)已训练模型
2023-10-20 22:58:09 36.81MB 深度学习 商业资料
1
开源项目https://github.com/TencentARC/GFPGAN的训练模型,可用于人像的修复,具体操作可以参考开源项目
2023-10-14 13:55:19 308.42MB 图像处理 模型 GFPGAN 深度学习
1
基于bert的韵律预训练模型,用于中文语音生成,生成自然韵律的声音,听起来效果更加自然流畅
2023-10-08 09:46:00 362.87MB bert 韵律 语音合成
1
BETR预训练模型(num-classes = 8)
2023-09-25 15:36:53 158.97MB 预训练模型 DETR
1
yolov5头部训练模型
2023-08-25 12:49:36 12.53MB 深度学习 python 后端 Yolov5
1
Wav2Lip-HD预训练模型第一个包,包含人脸检测模型,语音驱动面部模型等,用于数字人语音驱动面部及图像超分辨率
2023-08-14 15:22:20 679.52MB wav2lip 人脸检测 数字人
1
猕猴桃种植知识图谱构建。针对猕猴桃种植领域数据多源异构的特点,采用自顶向下的方式构建猕猴桃种植知识图谱,首先设计猕猴桃种植知识图谱的本体概念模式,然后根据模式层的本体规范将抽取的三元组事实加入到数据层知识库中;针对知识图谱构建过程中知识抽取方法复杂、准确率低以及知识补全困难等问题,采用实 体关系联合抽取方法和基于TransR的知识补全方法,并构建了融合字词语义信息的猕猴桃种植实体识别模型,该模型以SoftLexicon为基础,通过MHA和Attention机制分 别调整词权重和词集重要度进一步提高命名实体识别精确率。实验结果表明,本文构 建的猕猴桃种植实体识别模型与SoftLexicon模型相比,F1值提高了1.58%,达到了91.91%,在ResumeNER公开数据集上F1值达到了96.17%;猕猴桃种植三元组抽取F1值为92.86%;基于TransR的知识补全方法Hit@3和Hit@10分别为90.40%和92.60%。
2023-08-13 16:48:01 10.26MB 知识图谱 实体对齐 自然语言处理
1
pytorch中的训练模型示例 PyTorch中的深度学习算法的一些实现。 排名-学习排名 排名网 前馈NN,最小化文档对交叉熵损失函数 训练模型 python ranking/RankNet.py --lr 0.001 --debug --standardize --debug打印参数规范和参数grad规范。 这可以评估是否存在梯度消失和梯度爆炸问题- --standardize可确保将输入缩放为平均值为0且标准差为1.0 NN结构:136-> 64-> 16-> 1,ReLU6作为激活函数 优化器 r 时代 损失(火车) 损失(评估) ndcg @ 10 ndcg @ 30 秒/纪元 因式分解 对/秒 亚当 0.001 25 0.63002 0.635508 0.41785 0.49337 312 损失函数 203739 亚当 0.001 50 0.6
2023-05-22 21:19:36 154KB learning-to-rank ndcg ranknet lambdarank
1
Word2Vec 模型word2vec-google-news-300。在 Google News 数据集上训练完成的 Word2Vec 模型,覆盖了大约 300 万的词汇和短语。该模型是利用了整个 Google News 大约 1000 亿个词的语料训练而成!由于文件太大,将压缩包分成了10个部分。
2023-05-05 18:18:55 180MB 自然语言处理 预训练模型
1