Weby Weby是有关Internet世界不同实验元素的Web设计和博客发布教程。 所有项目都使用不同的Web设计技术以及在网页上使用这些技术的实验方法。 使用Weby,您将学习如何使用HTML5,CSS3,JavaScript,JQuery等方面的最新创新。 ##实验 Clip-Path基本: : 低聚: : 过渡卡: : 文字动画(边框)(2015年7月26日)。 Low Poly动画(03/08/2015)。
2025-06-24 22:29:04 2.38MB
1
目前,大数据受到社会各界的广泛关注。受数据体量大、结构多样化、处理迅速快等因素影响,大多数传统的数据安全保护技术不再适用于大数据环境,着使得大数据安全问题日益严重。为此,近些年提出了大量的大数据安全保护技术。从加密算法、完整性校验、访问控制技术、密文数据去重和可信删除、密文搜索等视角,对当前大数据安全保护关键技术的研究现状进行分类阐述,分析其优缺点,并探讨它们未来发展趋势。
2025-06-23 09:19:31 1.41MB
1
【项目资源】: 包含前端、后端、移动开发、操作系统、人工智能、物联网、信息化管理、数据库、硬件开发、大数据、课程资源、音视频、网站开发等各种技术项目的源码。 包括STM32、ESP8266、PHP、QT、Linux、iOS、C++、Java、python、web、C#、EDA、proteus、RTOS等项目的源码。 【项目质量】: 所有源码都经过严格测试,可以直接运行。 功能在确认正常工作后才上传。 【适用人群】: 适用于希望学习不同技术领域的小白或进阶学习者。 可作为毕设项目、课程设计、大作业、工程实训或初期项目立项。 【附加价值】: 项目具有较高的学习借鉴价值,也可直接拿来修改复刻。 对于有一定基础或热衷于研究的人来说,可以在这些基础代码上进行修改和扩展,实现其他功能。 【沟通交流】: 有任何使用上的问题,欢迎随时与博主沟通,博主会及时解答。 鼓励下载和使用,并欢迎大家互相学习,共同进步。
2025-06-22 22:25:16 1.75MB 毕业设计 课程设计 项目开发 资源资料
1
内容概要:本文详细介绍了利用Python进行微博文本情感分析的研究,涵盖了三种主要的技术手段:情感词典、支持向量机(SVM)以及长短期记忆网络(LSTM)。作者首先解释了数据预处理的方法,如编码选择、表情符号转换等。接着分别阐述了每种方法的具体实现步骤及其优缺点。情感词典方法简单直接但准确性有限;SVM方法通过TF-IDF提取特征,适用于中小规模数据集;LSTM则凭借深度学习的优势,在大规模数据集中表现出更高的准确性和鲁棒性。此外,还探讨了一个融合多种模型的混合方法。 适合人群:对自然语言处理、机器学习感兴趣的研发人员和技术爱好者,尤其是希望深入了解情感分析领域的从业者。 使用场景及目标:① 快速构建情感分析原型系统;② 在不同规模的数据集上评估并选择合适的情感分析模型;③ 提升微博评论等社交媒体文本的情感分类精度。 其他说明:文中提供了完整的代码示例和数据集下载链接,便于读者动手实践。同时强调了各方法的特点和局限性,帮助读者更好地理解和应用相关技术。
2025-06-22 13:42:34 1.94MB
1
这是大数据作业课程设计
2025-06-22 02:09:51 139.27MB python spark 课程设计
1
【大数据的实时交通流预测方法研究】 随着社会进步和科技发展,智能化已成为不可阻挡的趋势,尤其是在交通领域。大数据的实时交通流预测方法是应对日益增长的汽车数量和交通拥堵问题的有效手段,它通过收集和分析大量的交通数据,能提供实时的交通情况预测,有助于优化交通管理和提升城市智慧化水平。 交通流预测的研究具有重大意义。汽车的普及率增加,各种类型的车辆在道路上行驶,使得交通管理面临复杂性挑战。大数据技术的进步为交通数据分析提供了强大支持,可以实现实时采集和预测交通流,为构建高效智能交通系统奠定了基础。 国内外对实时交通流预测方法的研究已取得显著进展。在国外,Bootstrap算法和GARCH模型是区间预测的常用方法,Bootstrap算法通过样本重采样估计总体,GARCH模型则能准确模拟时间序列的波动性。在国内,研究人员利用Bootstrap方法改进传统预测控制,并且支持向量机(SV)模型也在交通预测中展现出潜力,特别是在金融领域的高频数据分析中得到应用。 此外,均值预测方法因其快速的计算速度和良好的实时性,也常被用于交通流预测。这些方法共同构成了实时交通流预测的理论和技术框架,为解决交通拥堵、提升道路通行效率提供了科学依据。 未来的研究方向可能包括:结合物联网和AI技术,进一步提高预测精度;探索更高效的计算算法,减少预测延迟;开发适应复杂交通环境的多元模型;以及利用深度学习等先进技术挖掘更深层次的交通模式。 参考文献: 1. 高青海.智能网联车辆跟驰模型及交通流特性研究[J/OL].公路,2021(10):2-8 2. 王海起,王志海,李留珂,孔浩然,王琼,徐建波.基于网格划分的城市短时交通流量时空预测模型[J/OL].计算技术与自动化,2021. 以上是对"大数据的实时交通流预测方法研究"的详细说明,涵盖了研究背景、意义、国内外现状和未来趋势,以及主要参考文献。这项研究旨在通过深入探究和应用大数据技术,为构建更智能、更高效的交通管理系统贡献力量。
2025-06-21 17:47:57 253KB 毕业设计
1
在本案例中,我们将探讨如何使用Python和R语言对一年的图书馆借阅数据进行大数据分析。这两种编程语言在数据科学领域都有广泛的应用,各有优势,且可以相互补充。以下是涉及的知识点: 1. **Python**: Python是数据科学的首选语言之一,因其简洁易读的语法和丰富的库支持而闻名。在处理大数据时,Python的Pandas库提供了高效的数据结构(如DataFrame)和数据分析工具。Numpy用于数值计算,Scipy用于科学计算,Matplotlib和Seaborn用于数据可视化。 2. **R语言**: R语言是统计分析的专业语言,拥有强大的统计功能和丰富的图形绘制能力。其核心库如dplyr用于数据操作,tidyr用于数据整理,ggplot2用于美观的数据可视化,以及tidyverse家族的其他库提供了全面的数据分析解决方案。 3. **数据加载与预处理**: 在Python中,我们可以使用Pandas的`read_csv()`函数从文本文件加载数据,而在R中,可以使用`read.csv()`或`read.table()`。预处理步骤可能包括清理缺失值、异常值检测、数据类型转换和数据标准化等。 4. **数据探索性分析(EDA)**: EDA是理解数据特性和发现潜在模式的关键步骤。Python的Pandas提供方便的数据摘要统计,R的`summary()`函数则快速给出变量的基本统计量。同时,两种语言都支持数据切片、分组和排序操作,以及创建各种统计图表。 5. **数据清洗**: 数据清洗是处理真实世界数据时的重要环节,涉及处理重复值、异常值、不一致格式等问题。Python的Pandas和R的dplyr提供了相应的函数来处理这些问题。 6. **统计建模**: 无论是Python的sklearn库还是R的`stats`或`caret`包,都能实现各种统计模型,如线性回归、决策树、随机森林、支持向量机等。这些模型可用于预测图书借阅的频率、用户偏好等。 7. **时间序列分析**: 图书馆借阅数据往往具有时间序列特性,Python的`pandas.DatetimeIndex`和R的`ts`对象可处理此类数据。ARIMA模型、季节性分解等方法可用于分析借阅量的周期性变化。 8. **大数据处理**: 对于大型数据集,Python的Dask和R的Sparklyr库允许我们利用分布式计算资源进行大规模数据分析。 9. **结果可视化**: 通过Python的Matplotlib和Seaborn,以及R的ggplot2,我们可以创建专业且直观的图表,如直方图、折线图、散点图、热力图等,以帮助理解分析结果。 10. **报告与分享**: Python的Jupyter Notebook和R的R Markdown允许将代码、分析和可视化结果整合到交互式文档中,方便分享和解释工作流程。 在这个案例中,我们将首先加载"LibraryBigData"中的数据,然后进行数据探索、清洗和预处理。接着,我们可以构建适当的统计模型来理解图书馆借阅模式,分析用户行为,预测未来趋势。我们将通过可视化工具展示分析结果,形成报告,以便决策者参考。整个过程展示了Python和R在数据科学项目中的协同作用。
2025-06-20 19:03:56 48.27MB python r语言 数据分析
1
大数据是21世纪信息技术领域的重要概念,它涉及海量、高增长速度、多样化的信息资源,这些数据通过传统数据处理方式难以有效地捕获、管理、分析和利用。Hadoop作为大数据处理的核心框架,为应对大数据挑战提供了强大的解决方案。本文将深入探讨大数据的基础知识,包括Hadoop生态圈、数据挖掘数学基础、Java基础以及Linux基础,并简要介绍Spark。 Hadoop是一个开源的分布式计算框架,由Apache软件基金会维护。它的核心组件包括Hadoop Distributed File System (HDFS) 和 MapReduce。HDFS提供高容错性的分布式存储系统,使得在廉价硬件上存储和处理大规模数据成为可能。MapReduce则是一种编程模型,用于大规模数据集的并行计算,将复杂任务拆分成可并行执行的小任务。 在Hadoop生态圈中,还包括众多相关的项目,如HBase(一个分布式的、面向列的数据库)、Hive(一个数据仓库工具,支持SQL查询)、Pig(一种数据分析工具,用于构建和执行MapReduce作业)、Zookeeper(用于分布式应用协调服务)等,它们共同构建了高效、弹性的大数据处理环境。 数据挖掘是大数据分析的重要环节,而数学基础在此扮演关键角色。线性代数、概率论与统计、图论等是数据挖掘的基石,它们帮助我们理解数据的结构、特征提取、模型构建和验证。例如,矩阵运算在机器学习算法中广泛使用,而概率论则为预测模型提供了理论基础。 Java是Hadoop和许多大数据处理工具的首选编程语言,因为其跨平台特性和丰富的库支持。熟悉Java基础,包括类、对象、集合、多线程、IO流等概念,对于开发Hadoop应用程序至关重要。 Linux是大数据处理的常用操作系统,因其稳定性和对服务器环境的良好支持。掌握Linux基础,包括命令行操作、文件系统管理、进程控制、网络配置等,对于在集群环境中部署和管理大数据系统至关重要。 Spark是另一种流行的分布式计算框架,设计目标是提高大数据处理的速度和易用性。相比Hadoop MapReduce,Spark使用内存计算,大大提升了处理性能。Spark支持多种数据处理模式,如批处理、交互式查询(通过Spark SQL)和流处理(通过Spark Streaming),并且提供了图形处理和机器学习库(MLlib)。 大数据入门需要掌握Hadoop及其生态圈的原理和应用,理解数据挖掘的数学基础,熟练运用Java编程,以及熟悉Linux操作系统。随着技术的发展,学习Spark和其他相关工具也变得越来越重要,这将有助于应对不断增长的数据量和复杂度带来的挑战。
2025-06-14 17:16:00 12KB 大数据云计算hadoop hadoop
1
互联网技术的发展已经深入到我们生活的方方面面,其中油猴脚本作为一项应用广泛的技术,它能够在浏览器上运行自定义的JavaScript代码,扩展和改变网页的行为和外观,极大地增强了用户的网络体验。随着技术的不断进步,百度云网盘作为国内领先的云存储服务提供商,为用户提供了便捷的文件存储和分享服务。然而,用户在使用百度云网盘进行文件批量转存时往往会遇到数量限制的问题,这大大降低了工作效率。为了解决这一问题,有技术爱好者利用油猴脚本开发了一款增强工具,旨在解除百度云网盘批量转存文件数量的限制,使得批量操作更为高效便捷。 这款工具的开发基于Tampermonkey等浏览器插件。Tampermonkey是一款流行的用户脚本管理器,它能够管理和运行用户自定义的脚本,使得对网页的定制变得更加简单。通过安装Tampermonkey插件,用户可以运行特定的油猴脚本,实现对百度云网盘的操作自动化,比如自动勾选文件、自动点击保存按钮等,从而绕过官方设定的批量转存数量限制。 在实际使用这款脚本工具时,用户需要先在浏览器中安装Tampermonkey插件,并通过该插件添加相应的脚本。使用时,用户只需在百度云网盘的网页上执行脚本,脚本将会自动执行批量保存的操作。这不仅可以大幅提升文件处理的效率,还能够让用户体验到更加智能和人性化的服务。 油猴脚本的灵活性和强大的扩展性使其成为互联网技术领域内的一项重要工具。它不仅适用于百度云网盘这样的具体应用,还可以广泛应用于其他网站和网页,根据用户的个性化需求进行定制。例如,油猴脚本可以用来去除网站广告、改变网页布局、增强网站功能等,极大地提升了用户的上网体验。 此外,这款工具还展示了开源社区的力量,开发者通过分享自己的代码,让更多的用户受益。它不仅仅是一个简单的工具,更是技术分享和知识传播的产物。在开源社区中,无数的开发者和爱好者通过协作和交流,不断推动着技术的发展和应用。 然而,使用此类工具也需要注意安全性和合法性问题。由于涉及浏览器扩展和自动化操作,用户应确保所使用的脚本来源可靠,并且不违反相关的法律法规。同时,用户需要有基本的网络安全意识,避免使用未经验证的脚本,以防个人信息被非法获取。 这款解除百度云网盘批量转存文件数量限制的自动化脚本工具是油猴脚本技术在实际应用中的一次创新。它不仅提高了工作效率,还展示了技术开源分享的力量。通过不断的技术创新和合理合法的应用,我们可以期待互联网技术在未来将为我们的生活带来更多便利和可能。
2025-06-14 09:49:40 49KB
1
开题报告中所提到的“旅游景区大数据推荐系统”的设计与实现,是当前旅游业与信息技术相结合的一个重要研究方向。以下为该开题报告所涉及的关键知识点和研究内容的详细解读。 ### 一、选题背景与意义 #### 选题背景 随着互联网和移动设备的普及,旅游业获得了快速发展。但是,从海量旅游信息中快速获取用户感兴趣的内容是一个难题。传统的信息检索方式效率低下,无法满足用户的个性化需求。旅游信息的快速更新和庞大的数据量对传统数据处理技术提出了挑战。因此,高效地收集、存储和分析旅游数据,进而为用户提供个性化推荐服务,成为了研究的热点。 #### 选题意义 本课题的研究意义在于探索利用大数据技术提升旅游景区的游客体验和服务质量。通过爬虫技术收集旅游相关数据,Hadoop处理大规模数据,Spark进行高效的数据分析和挖掘,以及通过Django Web框架构建用户友好的界面,实现个性化旅游推荐服务。该系统能够帮助用户快速找到感兴趣的内容,并根据用户的偏好和历史行为动态调整推荐策略,提高用户体验,并为景区管理者提供科学决策的依据。 ### 二、国内外研究现状 #### 国内研究现状 国内关于爬虫、Hadoop、Spark和Django结合用于构建旅游景区大数据推荐系统的相关研究逐渐增多。爬虫技术在旅游信息收集方面发挥关键作用,Hadoop在海量数据存储与初步处理方面应用广泛,Spark在实时性要求高的数据分析任务中表现突出,Django在构建服务前端展示层方面得到广泛应用。 ### 三、研究内容与技术路线 #### 研究内容 课题研究内容包括爬虫技术的应用、Hadoop分布式计算框架的使用、Spark实时计算平台的利用以及Django Web开发框架的实施。目标是构建一个能够收集、存储、分析旅游大数据,并提供个性化推荐服务的系统。 #### 技术路线 - **爬虫技术**:从旅游网站、社交媒体等渠道自动收集旅游信息。 - **Hadoop框架**:用于旅游大数据的存储和预处理,保证数据的完整性和可靠性。 - **Spark平台**:进行高效的数据分析和挖掘,提取有价值的信息。 - **Django框架**:构建Web应用,以用户友好的方式展示分析结果,并提供个性化推荐服务。 ### 四、系统设计与实现 #### 系统设计 系统设计包含数据采集、数据处理、数据分析、用户界面等模块。数据采集模块通过爬虫技术实现,数据处理和分析模块分别由Hadoop和Spark支持,而用户界面则通过Django框架实现。 #### 系统实现 系统实现涉及数据采集的准确性、高效性,数据处理的可靠性,数据分析的深入性,以及用户界面的便捷性和个性化。通过综合运用现代信息技术,旨在实现一个智能化、精细化的旅游推荐系统。 ### 五、预期成果与价值 #### 预期成果 预期成果包括一个高效实用的旅游景区大数据推荐系统,能够快速响应用户需求,提供个性化旅游推荐,优化旅游资源配置,并提升景区服务质量。 #### 研究价值 研究价值在于提高数据处理的效率和准确性,探索新的数据驱动旅游推荐方法,推动旅游业与信息技术的深度融合,具有重要的理论价值和实际应用意义。 ### 六、项目实施计划 #### 研究计划 项目实施计划包含系统需求分析、技术选型、系统设计、编码实现、测试优化等阶段。每个阶段都有明确的目标和时间表,确保项目顺利进行。 通过上述研究,本开题报告旨在展现如何利用现代信息技术提升旅游服务的质量,满足日益增长的个性化旅游需求,进而推动旅游业的智能化发展。在技术层面,体现了爬虫、Hadoop、Spark和Django等技术的综合运用,构建一个全面、高效、用户友好的旅游景区大数据推荐系统。
2025-06-12 16:16:03 139KB Python 开题报告 毕业设计
1