Python基于深度学习的交通流预测(SAEs、LSTM、GRU) Requirement Python 3.6 Tensorflow-gpu 1.5.0 Keras 2.1.3 scikit-learn 0.19 Train the model Run command below to train the model: python train.py --model model_name You can choose "lstm", "gru" or "saes" as arguments. The .h5 weight file was saved at model folder. Experiment Data are obtained from the Caltrans Performance Measurement System (PeMS). Data are collected in real-time from individual detectors spanning the freeway system across all major metropolitan
2024-04-15 16:40:21 6.42MB LSTM
1
本项目是作者预演的方案,内含源码和数据集。可以作为demo直接使用。
2024-04-14 17:19:30 159KB 机器学习 深度学习
课堂专注度及考试作弊系统、课堂动态点名,情绪识别、表情识别和人脸识别结合 转头(probe)+低头(peep)+传递物品(passing) 课堂专注度+表情识别 侧面的传递物品识别 **人脸识别**:dlib_face_recognition_resnet_model_v1.dat - detection_system/face_recog/weights **人脸对齐**:shape_predictor_68_face_landmarks.dat - detection_system/face_recog/weights **作弊动作分类器**:cheating_detector_rfc_kp.pkl ## 使用 ### 运行setup.py安装必要内容 ## 使用 ### 运行setup.py安装必要内容 ```shell python setup.py build develop ``` [windows上安装scipy1.1.0可能会遇到的问题](https://github.com/MVIG-SJTU/AlphaPose/issues/722) ### 运行
2024-04-11 09:11:37 105.52MB 深度学习 python 毕业设计 人脸识别
1
基于深度学习与词嵌入的情感分析系统设计与实现【毕业设计源码+答辩PPT+论文】 1、研究目的 针对文本进行句子和段落级的情感倾向性分析,利用算法来判断句子的情感色彩。研究的目标在于提高情感分析算法的准确性,不断学习,不断提高和优化算法。在实际数据集上的进行模型训练与调优,并对模型进行简单的封装和部署。 2、研究方法 主要使用基于深度学习的方法,数据集采用论文常用的 IMDB 数据集,旨在提高最终设计模型的准确性。本文尝试吸收其他深度学习模型优点,自己设计了 7 个深度学习模型。本文主要创新点在于,利用模型集成融合里的堆叠法的思想,实现了 3 个树形的传统机器学习算法与 7个深度学习模型的集成。 3、研究结论 在第一个IMDB数据集上经过AUC评分,计算重合的面积, 可以达到95.97%分,排名能达到前15%。 在第二个twitter数据集上经过F1 Score的评分方法,得到了 0.7131280389的分数,排名196/614,30%左右。
2024-04-10 23:58:02 3.79MB 毕业设计 深度学习 情感分析 论文
1
基于深度学习和字符嵌入的细胞穿透肽预测
2024-04-08 23:50:33 1.18MB 研究论文
1
用python3实现基于深度学习的AI人脸识别系统,脚本可以直接运行(包括源码文件、数据文件) 用到技术:Flask + OpenCV-Python + Keras + Sklearn 压缩包中包括:照片样本采集源码、深度学习和训练源码、人脸识别相关源码、Flask实现人脸识别接口等。 通过浏览器上传图片,或者打开摄像头即可识别。
2024-04-08 15:09:37 147.6MB 深度学习 人工智能 python3
1
语音活动检测项目 关键字:Python,TensorFlow,深度学习,时间序列分类 目录 1.11.21.3 2.12.2 5.15.2将5.35.4 去做 资源 1.安装 该项目旨在: Ubuntu的20.04 的Python 3.7.3 TensorFlow 1.15.4 $ cd /path/to/project/ $ git clone https://github.com/filippogiruzzi/voice_activity_detection.git $ cd voice_activity_detection/ 1.1基本安装 $ pip3 install -r requirements.txt $ pip3 install -e . 1.2虚拟环境安装 1.3 Docker安装 构建docker镜像: $ sudo make build (这可能
1
Python是一种高级、通用、解释型的编程语言,由Guido van Rossum于1989年发起,1991年正式发布。Python以简洁而清晰的语法著称,强调代码的可读性和易于维护。以下是Python的一些主要特点和优势: 易学易用: Python的语法设计简单直观,更接近自然语言,使初学者更容易上手。这种易学易用的特性促使了Python在教育领域和初学者中的广泛应用。 高级语言: Python是一种高级编程语言,提供了自动内存管理(垃圾回收)等功能,减轻了程序员的负担,同时具有动态类型和面向对象的特性。 跨平台性: Python具有很好的跨平台性,可以在多个操作系统上运行,包括Windows、Linux、macOS等,使得开发的代码可以轻松迁移。 丰富的标准库: Python内置了大量的模块和库,涵盖了文件操作、网络编程、数据库访问等各个方面。这些标准库使得开发者能够快速构建功能丰富的应用程序。 开源: Python是开源的,任何人都可以免费使用并查看源代码。这种开放性促进了Python社区的发展,使得有大量的第三方库和框架可供使用。 强大的社区支持: Python拥有庞大而活跃的开发社区,这使得开发者可以轻松获取帮助、分享经验,并参与到Python的发展中。 适用于多个领域: Python在各种领域都有广泛的应用,包括Web开发、数据科学、人工智能、自动化测试、网络编程等。特别是在数据科学和人工智能领域,Python成为了主流的编程语言之一。 支持面向对象编程: Python支持面向对象编程,允许开发者使用类和对象的概念,提高了代码的重用性和可维护性。
2024-04-01 16:45:38 133.55MB python 毕业设计 课程设计
1
自动驾驶源码的介绍: 1、数据采集:使用树莓派4B连接摄像头,并采集用于训练的图像数据。通过将摄像头安装在小车上,可以实时地采集道路图像以及与行驶相关的信息,如车道线、交通标志等。 2、数据预处理:对采集到的图像数据进行预处理,包括图像去噪、尺寸调整和颜色空间转换等。这些预处理步骤旨在提高深度学习算法的准确性和效率。 3、深度学习模型训练:使用深度学习框架(如TensorFlow或PyTorch)构建自动驾驶模型。这个模型可以使用卷积神经网络(CNN)来处理图像数据,并对图像中的车道线进行检测和跟踪。 4、模型优化和调试:通过反复训练和调整深度学习模型,进一步优化自动驾驶算法的准确性和鲁棒性。这可以包括调整模型的超参数、增加训练数据量和进行模型压缩等。 5、实时控制:将训练好的模型加载到树莓派4B上,实现实时控制小车的输出。通过将模型与小车的电机控制器或舵机控制器连接,可以根据模型的预测结果进行自动驾驶控制。
2024-03-28 18:27:06 10KB tensorflow 自动驾驶 python
1
这个项目是一个基于深度学习的图像分类器,旨在实现对玉米叶子的健康状况的准确识别和分类。数据集包含四种类别:blight(病斑)、common rust(锈病)、gray leaf spot(灰斑病)和healthy(健康状态)。通过对数据集进行预处理和增强,使用resnet模型进行特征提取和分类,实现对不同病害的玉米叶子图像的自动分类。在模型训练过程中,采用了交叉验证来避免过拟合,并使用一些优化技术如批量归一化和随机失活来提高模型的泛化能力和准确性。最终,通过对模型的评估和测试,得到了高精度和高可靠性的玉米叶子分类器,可以在农业生产中发挥重要作用。
2024-03-25 11:09:24 312.57MB 图像处理 深度学习 python
1