labview基本框架之QMH(二)demo
2025-10-14 14:48:33 3.01MB labview
1
TL431是一款广泛应用于电子设计中的精密可调分流式电压基准源,具有良好的性能和成本效益比。TL431能够提供稳定的2.5V基准电压,其典型应用包括作为稳压器的参考电压源以及在电源电路中用于电压检测。在介绍TL431的用法时,我们通常会涉及到它的基本接法、稳压电路设计、鉴幅器、电压提升、放大器等应用场景。 TL431的典型接法中,能够输出一个固定电压值。其计算公式为Vout=(R1+R2)*2.5/R2,这表明通过合适的电阻R1和R2的配置,可以得到所需的电压输出。同时,为了保证TL431正常工作,R3的电流应该在1mA到500mA之间。当电阻R1取值为0时,R2也可以省略,这时电路将变成为一个2.5V的稳定电压源。 TL431能够用于构成鉴幅器电路。鉴幅器的作用是识别输入信号的幅值,只有当输入电压Vin低于设定阈值时,输出Vout才会是高电平,否则输出为接近2V的电平。要注意的是,在输入电压接近阈值时,微小的波动都可能导致输出不稳定。 此外,TL431还可以用于提升低电压,并将其反相输出。这类电路的输出计算公式为Vout=((R1+R2)*2.5-R1*Vin)/R2,其中特别的情况是当R1等于R2时,输出电压将会是Vout=5-Vin。这样的电路设计可以有效地将接近地的电压提升到预设范围之内,但是需要注意的是TL431的输出范围并不是满幅的。 TL431的高增益特性使其成为理想的小信号放大器。例如,TL431可以用作直流电压放大器,其放大倍数由外接电阻R1和Rin决定。这种电路类似于运算放大器的负反馈回路设计,而静态输出电压则由R1和R2决定。此类放大器结构简单,精度良好,并能提供稳定的静态特性,但输入阻抗较低,且输出电压摆幅有限。 交流放大器的电路结构与直流放大器相似,但是针对交流信号进行放大,它们具有相同的优点和缺点。例如,TL431可以用于放大热释红外传感器的输出信号,这样的设计可以减少传统运放的使用,简化电路设计。 TL431的多样应用覆盖了从提供精确基准电压、电压检测、电压转换到信号放大等多个方面。理解这些基本用法有助于电子工程师在实际设计电路时做出合适的选择,以实现所需功能。根据不同的设计需求,可以通过调整外围元件参数来定制TL431的行为,从而在广泛的应用场景中发挥其功能。
2025-10-10 23:36:12 151KB power
1
恒流源电路是一种重要的电子电路,它能保持输出电流的恒定,不随负载或电源电压的变化而变化。这种特性在许多电子设备中都极为关键,例如在模拟电路设计、LED驱动器、电源管理以及传感器等领域都有广泛应用。下面将详细阐述恒流源的工作原理和几种常见的实现方式。 基本电流镜结构是恒流源的基础,它基于电流复制的原理。当两个工艺参数相同的MOSFET(金属-氧化物-半导体场效应晶体管)在饱和区工作时,如果它们的栅源电压相同,那么它们的漏极电流也会相等。然而,由于沟道调制效应,当漏源电压VDS不一致时,即使栅源电压相同,电流也会不同。为了克服这个问题,可以通过调整MOSFET的宽长比来设计出与参考电流成比例的输出电流,这就是比例电流镜的工作原理。但这种方法无法提供真正的恒流源,因为VDS2的变化会影响输出电流Io。 为了改善电流镜的恒流特性,通常有两种方法:一是尽量减少或消除M2的沟道调制效应,可以通过增加M2的沟道长度来提高输出阻抗;二是设置VDS2等于VDS1,使得Io只与M1和M2的宽长比有关,从而实现更好的恒流特性。在实际应用中,尤其是在小特征尺寸的CMOS工艺中,通常会采用第二种方法来设计恒流源电路。 威尔逊电流源是另一种改进的恒流源结构,它利用负反馈来提高输出阻抗,以增强恒流特性。在这个电路中,通过M3形成负反馈,使得VDS1>VGS1,保证M1始终工作在饱和区。由于VDS2和VDS1之间的关系,输出电流Io与参考电流IR不仅与M1、M2的尺寸有关,还取决于VGS2和VGS3的值。通过交流小信号等效电路分析,可以计算出电路的输出阻抗,进一步优化恒流特性。威尔逊电流源的优点是只需要三个MOS管,结构相对简洁,同时适用于亚阈值区。 然而,即使是威尔逊电流源,其M3和M2的漏源电压仍然不相等,因此有一种改进型的威尔逊电流源,引入了二极管连接的MOS管M4。通过设定VGS3=VGS4,可以使VDS1=VDS2,从而消除沟道调制效应,提高恒流精度。这种结构只需要四个MOS管,适合于对精度要求较高的应用。 共源共栅电流源是一种高输出阻抗的恒流源,其特点是使用共源共栅结构来确保VDS2=VDS1,从而改善恒流特性。通过适当选择M3和M4的尺寸,使得VGS3=VGS4,这样整个电路就能实现恒定的输出电流。这种结构在需要高精度和高输出阻抗的场合非常有用。 总结起来,恒流源电路的设计和优化是一个复杂的过程,涉及到MOSFET的沟道调制效应、负反馈机制以及电路的尺寸匹配。通过这些方法,我们可以设计出各种具有不同特性的恒流源,以满足不同应用场景的需求。
2025-10-08 17:07:27 503KB 恒流源电路
1
lua-utf8-简单 这个“库”是一个非常瘦的助手,您可以轻松地将其放入另一个项目,而无需真正将其称为依赖项。 它旨在为处理 utf8 字符串提供最少的处理函数。 它的目标不是功能完整,甚至不是错误描述。 它适用于实用但不复杂的东西。 你被警告了。 =^__^= require() 行 local utf8 = require ( ' utf8_simple ' ) 您需要了解的唯一功能 utf8.chars(s[, no_subs]) s:(字符串)要迭代的 utf8 字符串(按字符) nosubs: (boolean) true 将子字符串 utf8 字符转换为字节长度 -- i is the character/letter index within the string -- c is the utf8 character (string of 1 or more byt
2025-10-07 19:25:26 5KB Lua
1
LSTM(长短期记忆网络)作为一种特殊的循环神经网络(RNN)结构,被广泛应用于处理和预测时间序列数据。在电池管理系统(BMS)中,对电池的荷电状态(State of Charge, SOC)的精确估计是保障电池安全、延长电池寿命和提高电池效率的关键技术之一。本文将详细介绍如何使用LSTM技术进行电池SOC估计,并提供一个包含两个数据集及其介绍、预处理代码、模型代码和估计结果的完整代码包,旨在为初学者提供一个全面的学习资源。 数据集是进行电池SOC估计的基础。在本代码包中,包含了两个经过精心挑选的数据集。这些数据集包括了不同条件下电池的充放电循环数据,如电压、电流、温度、时间等参数。通过分析这些数据集,可以发现电池性能随着循环次数和操作条件的变化规律,为模型的训练提供丰富的信息。 数据预处理是模型训练之前的必要步骤。在电池SOC估计中,由于原始数据通常包含噪声和异常值,且不同数据之间可能存在量纲和数量级的差异,因此需要对数据进行清洗和归一化处理。预处理代码包中的Python脚本将指导如何去除不规则数据、进行插值、归一化和数据分割等操作,以确保模型能够在一个干净、格式统一的数据集上进行训练。 模型代码是整个SOC估计过程的核心部分。本代码包提供了基于LSTM网络的SOC估计模型代码,详细展示了如何搭建网络结构、设置超参数、进行训练和验证等。其中,LSTM的多层堆叠结构可以捕捉到电池长期依赖性,这对于SOC估计至关重要。代码中还包括了模型的保存和加载机制,便于进行模型的持久化处理和后续的模型评估。 估计结果是验证模型性能的重要指标。通过在测试集上运行模型,可以得到电池SOC的估计值,并与实际值进行对比。本代码包中包含的评估脚本将帮助用户计算均方误差(MSE)、均方根误差(RMSE)等多种评价指标,从而对模型的准确性和泛化能力进行全面评估。 此外,技术博客文章在电池估计中的应用解析一引言.doc、做电池估计最基本的.html等文档,提供了对电池SOC估计方法论的深入解读和实战指南。这些文档详细介绍了电池SOC估计的意义、应用场景以及所采用技术的原理和优势,为初学者提供了从理论到实践的完整学习路径。 本代码包为电池SOC估计提供了一个从数据集获取、数据预处理、模型训练到结果评估的完整流程。它不仅适用于初学者入门学习,也为专业人士提供了一个实用的工具集。通过深入研究和实践本代码包,可以有效提升电池SOC估计的准确度,进而推动电池技术的发展和应用。
2025-09-29 11:32:46 179KB 数据仓库
1
本文档主要介绍了华为的5G基站,包括其方案、产品特性、功能模块以及基本操作。通过学习,读者应能掌握华为5G基站的系统概览、结构、室内部署方案以及基本操作流程。 1. 5G基站概述 - 系统概述:5G基站分为SA(Standalone)和NSA(Non-Standalone)两种组网模式。SA采用端到端5G网络架构,支持5G各种接口和功能;而NSA则依赖现有的4G LTE网络,作为5G服务的锚点。 - 系统结构:5G基站硬件主要由机柜、BBU(基带单元)和射频模块(如RRU或AAU)组成。 - 机柜及其部件:BBU有BBU3910和BBU5900等型号,尺寸和重量各有不同,BBU内部由多个子系统构成,如基带子系统、整机子系统等。 - 室内方案概述:5G基站支持多种室内部署方案,包括对AAU和RRU站点的供电方案、BBU机柜的配置以及BBU时钟系统。 2. 5G基站基本操作 - 设备及链路管理:涉及BBU和射频模块的安装、连接、调试,以及与核心网的链路建立和维护。 - 基本无线参数管理:涵盖NR(New Radio)频段的配置,如Sub6G频段的18个或36个小区设置,支持不同天线配置(2T2R、4T4R、32T32R、64T64R)。 3. 华为gNodeB基站描述 - 华为提供多种站型,如DBS3900和DBS5900,其中BBU3910和BBU5900是关键组件,它们支持不同容量规格,例如针对NR Sub6G的不同小区数量和天线配置。 - AAU(Active Antenna Unit)和RRU(Remote Radio Unit)站点的供电方案需要考虑,以确保设备正常运行。 - BBU时钟系统对于保持通信同步至关重要,确保数据传输的准确性和效率。 4. BBU物理和逻辑结构 - BBU5900和BBU3910在物理上具有相同的尺寸,但重量有所不同,BBU5900满配置不超过18kg,而BBU3910满配置为15kg。 - BBU逻辑结构模块化,包含基带、整机、传输、互联、主控、监控和时钟子系统,各子系统协同工作,提供完整的基站功能。 5. BBU槽位配置和单板 - BBU5900和BBU3910都有11个槽位,用于插入不同类型的单板,如基带处理单元(UMPT)、基带处理板(UBBP)等,具体分布根据实际需求和配置进行。 通过以上内容,读者将能够理解华为5G基站的架构,操作方法,以及如何根据具体场景选择合适的配置,为5G网络的建设和运维提供理论基础。
2025-09-25 16:44:35 2.68MB
1
BasicThemer 2 C#.Net版本的BasicTheme.ahk,它将Win7基本主题应用于Windows Vista-10,同时保持DWM运行。 使用Visual Studio 2019构建 参考
2025-09-24 18:21:33 1.61MB
1
如果在一些单片机系统中基本数据类型没有办法表示应用所要支持的数据精度或者有效数据长度的时候(比如利用8位单片机系统实现计算器应用时),那么应用的数据类型必须重新基于系统的基本数据类型自己定义(比如用8个字节来表示一个数据类型),那么利用自定义的数据类型来进行基本的运算时,都需要重新实现,简单的加法、减法、赋值等操作都需要重新实现。相信本资源将会对你有所帮助!!!
2025-09-17 07:57:29 4KB 大数、计算器
1
MATLAB语言_基本遗传算法MATLAB程序.zip
2025-09-16 17:03:17 55KB
1
中微子的质量层次,CP违反和θ23的八分圆是中微子振荡的基本未知数。 为了解决所有这三个未知数,我们研究了一个装置的物理范围,在该装置中,我们用静止的μ子衰减产生的中微子(μ-DAR)代替了T2HK的中微子运行。 这种方法的优点是在中微子和反中微子模式下都具有较高的统计量,并且抗中微子运行的波束背景较低,系统性也有所降低。 我们发现,由T2HK(ν)和μ-DARν¯$$ \ left(\ overline {\ nu} \ right)$$组成的混合设置以及来自T2K和NOνA的完全曝光可以解决以下问题: 质量等级大于3σCL 无论选择哪个层次,δCP和θ23。 这种混合设置还可以在5σC.L处建立CP违反。 对于δCP的约55%的选择,而传统的T2HKν+ν$$ $$ \ left(\ nu + \ overline {\ nu} \ right)$$以及T2K和NOνA的设置约为30%。 就θ23的八分圆而言,此混合设置可以排除5σC.L下的错误八分圆。 如果θ23与任何δCP的最大混合相距至少3°。
2025-09-16 10:03:42 536KB Open Access
1