实验四IIR数字滤波器设计及软件实现实验报告的知识点涵盖了数字信号处理的核心领域,主要围绕无限脉冲响应(IIR)滤波器的设计与实现。以下是对实验报告内容的详细知识点总结: IIR滤波器设计原理及方法: 1. 双线性变换法是设计IIR数字滤波器的主流方法,它包括将给定的数字滤波器规格转换为过渡模拟滤波器规格,设计过渡模拟滤波器,并最终转换成数字滤波器的系统函数。 2. 使用MATLAB信号处理工具箱中的滤波器设计函数(如butter、cheby1、cheby2和ellip)可以直接设计出巴特沃斯、切比雪夫以及椭圆滤波器。 3. 滤波器设计的关键在于确定滤波器的指标参数,包括通带截止频率、阻带截止频率、通带最大衰减以及阻带最小衰减等。 滤波器设计的具体步骤: 1. 分析信号并确定需要设计的滤波器类型(低通、带通、高通)。 2. 使用MATLAB的滤波器设计分析工具fdatool或相关函数(如ellipord和ellip)来设计滤波器。 3. 设计完成后,通过绘图显示滤波器的幅频响应特性曲线,确保设计满足规格要求。 实验过程中的信号处理: 1. 利用信号产生函数mstg产生一个由三路不同载波频率调幅信号组合成的复合信号。 2. 利用MATLAB绘图显示该复合信号的时域波形和频谱特性,分析频谱特性以确定各个调幅信号的频率成分。 3. 根据频谱特性,确定滤波器的参数,以分离出复合信号中的各个调幅信号。 4. 使用filter函数对复合信号进行滤波处理,分离出各个独立的调幅信号,并绘制其时域波形以观察分离效果。 实验报告中提及的具体信号及其特性: 1. 克制作载波单频调幅信号,其数学表达式和频谱特性,以及如何通过频谱分析来设计滤波器。 2. 通过信号产生函数mstg产生的复合信号st,其长度、采样频率、载波频率和调制信号频率的详细数值。 3. 信号中包含的具体载波频率为250Hz、500Hz和1000Hz的三个调幅信号,以及它们的调制信号频率。 MATLAB工具在实验中的应用: 1. 使用MATLAB的信号处理工具箱函数设计滤波器并分析滤波器的频率响应特性。 2. 运用MATLAB进行信号的时域和频域分析,包括绘制时域波形和幅频特性曲线。 通过实验报告的详细内容,可以了解到在数字信号处理领域,如何应用数学原理和计算机软件来设计有效的滤波器,实现信号的有效分离和处理。此外,该报告还介绍了如何利用MATLAB工具箱进行模拟和数字滤波器的设计与实证分析,强调了理论与实践相结合的重要性。
2025-09-10 02:51:05 124KB
1
知识点: 华三云实验室基本操作:华三云实验室是网络工程学生学习和实践的重要工具,本实验模拟器HCL主要涉及以下基本操作:创建工程、保存和导出工程、设备和线缆类型的选择与添加、抓包方法、查看接口信息、添加注释和框线等。 工程创建、保存、导出:在进行网络实验之前,首先需要创建一个工程,方便对实验过程进行管理。在完成实验后,需要将实验过程保存,以便下次查看和学习。在需要的时候,也可以导出工程,分享给其他人。 设备和线缆类型选择与添加:在华三云实验室中,需要根据实验需求,选择合适的设备和线缆类型,并将其添加到实验拓扑中。这包括但不限于虚拟PC机、路由器、交换机等网络设备,以及快速以太网线、光纤等连接线缆。 抓包方法:在实验过程中,可能需要对网络流量进行抓包分析,以获取更详细的网络信息。在HCL模拟器中,可以通过右键点击设备间连线,选择“开启抓包”,然后选择需要抓包的接口,启动抓包。 查看接口信息、添加注释和框线:在进行网络实验时,需要能够查看设备接口信息,以及对其进行注释和框线的添加,以便于更好地理解和管理实验拓扑。 网络互通实验:网络互通实验主要通过设置设备IP地址、启动端口等,实现设备间的网络互通。然后通过ping命令测试网络互通情况。 抓包分析:在实验中,通过抓包工具,如Wireshark,可以对网络流量进行分析。通过设置报文过滤条件,筛选出需要的报文,并对报文封装的层次结构进行分析。 网络基础知识:在网络实验中,需要运用计算机网络的基本知识,如以太网帧、IP数据报、ICMP报文等,对网络工作原理进行理解。 网络配置与故障分析:在本实验中,还涉及到网络配置的修改和故障分析。例如,通过修改PC2的IP地址,分析不同网段设备之间的互通问题和路由设备的寻址问题。
2025-09-10 00:29:02 873KB
1
太赫兹波段是电磁波频谱中一个特殊的区域,位于微波和红外线之间,拥有独特的物理特性,例如可以在非导电材料中以低衰减传播,因此在通信、成像、生物医学和安全检查等领域有着广泛的应用前景。光电导天线作为一种太赫兹波源,通过光电效应产生太赫兹波,因此在太赫兹技术研究中具有重要地位。而COMSOL Multiphysics是一款强大的多物理场仿真软件,它能对包括电磁波在内的多种物理场进行建模和仿真分析,为太赫兹光电导天线的设计和优化提供了强有力的工具。 太赫兹光电导天线的工作原理基于光电效应,通常在半导体材料表面施加激光脉冲,激发产生载流子,形成瞬态电流,从而辐射出太赫兹波。在研究和设计太赫兹光电导天线时,需要考虑多个关键因素,包括半导体材料的选择、激光脉冲的参数、天线的几何结构以及工作环境等。这些因素直接影响到天线的辐射效率、带宽、方向性以及发射的太赫兹波的频率特性。 COMSOL软件在太赫兹光电导天线研究中的应用,主要体现在仿真分析上。研究者可以利用COMSOL的仿真环境对天线模型进行建模,模拟激光照射下的物理过程,分析载流子动力学,以及电磁波的辐射特性。这不仅有助于理解太赫兹波的产生机制,而且可以指导实验设计,预测实验结果,从而减少实验次数,节约研究成本。 在具体实施研究时,研究者会通过实验验证仿真模型的准确性。实验验证主要包括光电导天线的制作、激光激发实验、太赫兹波的检测等步骤。通过将实验数据与仿真结果进行对比,可以验证模型的正确性,并在此基础上进一步优化天线设计。 通过解析、仿真与实验验证的结合,研究者可以深入理解太赫兹光电导天线的工作原理,不断优化天线设计,最终实现高效的太赫兹波产生和控制。这一研究实践不仅对太赫兹技术的发展具有重要意义,也推动了COMSOL等仿真软件在光电技术领域的应用。 另外,由于太赫兹技术在很多领域都具有潜在的应用价值,因此相关的研究和开发工作也非常活跃。随着技术的进步和成本的降低,太赫兹光电导天线及其相关技术有望在未来的无线通信、生物医学成像、安检设备等领域发挥重要的作用。
2025-09-08 21:26:11 585KB 开发语言
1
内容概要:本文介绍了基于Matlab GUI的光波偏振仿真实验平台的设计与实现。首先,文章简述了光波偏振现象及其重要性,接着详细讲解了如何利用Matlab 2016a及以上版本提供的电磁场仿真工具箱和GUI设计功能构建实验平台。文中展示了具体的GUI设计流程,包括界面布局设计、控件创建以及关键代码解析,如初始化电磁场参数、模拟光波传播和偏振、将仿真结果显示在GUI界面上等功能。最后,文章展示了该平台的效果,强调了其在教育和研究领域的应用价值。 适合人群:对电磁场理论和光波偏振感兴趣的科研人员、高校教师、学生以及相关领域的开发者。 使用场景及目标:① 教育培训:作为教学辅助工具,帮助学生更好地理解和掌握光波偏振的概念;② 科研支持:提供一个便捷的实验环境,便于研究人员进行光波偏振的相关研究;③ 技术演示:可用于展示Matlab在科学计算和GUI设计方面的能力。 其他说明:该平台的成功搭建不仅提升了用户对电磁场理论的理解,同时也展示了Matlab在科学计算和图形化界面设计方面的强大能力。
2025-09-05 19:35:15 375KB
1
和声2 公用事业 使用 TCR 测序数据收集肿瘤浸润淋巴细胞单细胞实验 介绍 使用配对 TCR 测序组装公开可用的肿瘤浸润性 T 细胞 (TIL) 数据集的初衷是扩展和改进 R 包。 但是,经过一番讨论,我们决定为大家发布数据集,测序运行的完整摘要和样本信息可以在Seurat对象的元数据中找到。 该存储库包含用于数据集的初始处理和注释的代码(我们将此版本称为 0.0.1)。 这涉及几个步骤:1)加载相应的 GE 数据,2)通过样本和队列信息协调数据,3)通过自动注释进行迭代,4)通过手动检查和富集分析统一注释,以及 5)添加 TCR 信息。 此信息存储在 Seurat 对象的元数据中 - 每个变量的解释都可用。 队列信息 这是当前的数据源列表,通过组织类型过滤的细胞数量。 如果您使用实用程序,请引用数据! 血液 尤斯塔 LN 普通的 瘤 癌症类型 添加日期 引文 CCR-20-4394 0 0 0 0 26760 卵巢 21 年 6 月 19 日 GSE114724 0 0 0 0 27651 胸部 21 年 6 月 19 日 GSE121636 12319 0 0 0 11436 肾
2025-09-05 15:20:36 1.67GB 系统开源
1
通用软件无线电实验报告知识点总结 一、实验目的与设备 本实验的目的是掌握 TD-LTE CRC 校验和码块分割的原理和实现方法。实验设备包括安装有 MATLAB R2017A 和 Code Composer Studio 软件的 PC 机和实验箱。 二、实验步骤 实验步骤包括四个部分: 1. 借助课程 PDF 和协议文件,基本掌握算法原理。 2. 在 MATLAB 中编程,简单实现算法。 3. 在 Code Composer Studio 编程,编译下载到实验箱中。 4. 检查结果,进行验证,并且验收。 三、实验概要设计/算法描述 实验中涉及到两个主要算法:CRC 校验和码块分割。 1. CRC 校验: CRC 校验的原理是将待发送的数据块添加 r 个 0,生成多项式 G(x),然后用 G(x)去模 2除数据块,求得余数 R(x),即 CRC 校验码。 2. 码块分割: 码块分割的输入序列表示为:0121,,,...,,B0Bb b bb ->。如果 B 大于最大码块长度 Z(Z=6144),需要对输入序列进行码块分割,并且在每一个编码块的后面添加长度为 L = 24 的 CRC 检验序列。 四、实验源代码 实验源代码包括四个部分: 1. CRC 校验流程图和码块分割流程图 2. 自定义数据类型(结构),包括 IQData、Kparam 和 subblockInterParam 等 3. 全局变量/状态变量定义与更新规则,包括 InterweaveData、OriginalBuffer、CodeBlockBit、G 和 Kcodeblock 等 4. 源代码文件 CRCAdd.c,包括添加 CRC 序列的功能。 五、实验结果 实验结果包括 CRC 校验和码块分割的实现结果,验证了实验的正确性和可靠性。 六、实验结论 通过本实验,掌握了 TD-LTE CRC 校验和码块分割的原理和实现方法,提高了对通用软件无线电和移动通信的理解和应用能力。
2025-09-03 20:15:22 489KB
1
里面有数据结构实验里的代码,包括Hash-十大优秀青年、Huffman-文件压缩、中国邮路、List-顺序表、魔方阵、稳定婚姻速配、栈-迷宫。全部是C/C++代码实行,便于学习数据结构课程中各种结构的理解。
2025-09-03 15:33:04 472KB 数据结构
1
EDA技术是电子设计自动化(Electronic Design Automation)的缩写,它涵盖了利用计算机辅助设计软件来自动完成电子系统设计的整个流程。在本实验报告中,燕山大学电气工程学院的学生们通过一系列的实验来学习和实践EDA的基本概念,使用Verilog HDL硬件描述语言进行硬件设计,并通过EDA开发软件实现电路设计、仿真、综合及验证。 实验一要求学生设计一个全加器电路。全加器是数字电路中的基础组件,能够完成带进位的二进制数的加法运算。在实验中,学生使用拨码开关作为输入信号,LED灯作为输出显示,通过Verilog HDL编写代码来实现全加器的逻辑功能,并通过仿真波形和门级列表图验证电路设计的正确性。全加器的逻辑功能通过真值表来定义,实验结果显示输出端口的波形图与真值表一致,证明了设计的正确性。 实验二要求学生设计一个四选一的数据选择器。数据选择器是一个根据选择信号将多个输入信号中某一个信号传递到输出端的数字电路。学生利用Verilog HDL实现了一个四输入的数据选择器,通过仿真波形和门级列表图来验证设计结果。仿真结果表明数据选择器能够根据输入的选择信号正确地将对应的输入信号传递到输出端。 实验三关注的是设计一个三人或多人表决器电路。表决器是一种逻辑电路,它根据多数输入信号的状态来决定输出信号的状态。在本实验中,学生编写了表决器的Verilog代码,并通过实验验证了设计的功能。当参与表决的人中有多数同意时,LED灯亮起表示表决通过;反之,则熄灭表示表决未通过。 实验四旨在让学生初步了解EDA,并使用Verilog HDL来实现一个流水灯设计。流水灯是一个简单的循环灯光效果,通常用于电子设备的指示或装饰。学生通过实验学习如何设计一个简单的循环灯光效果,并通过EDA软件进行仿真测试。 总体来看,报告中的每个实验环节都是对EDA设计流程的详细演示,从理论学习、编码实现、仿真验证到硬件测试,都体现了学生对EDA工具熟练掌握和运用的整个过程。通过这些实验,学生们不仅加深了对EDA概念的理解,也提高了使用Verilog HDL进行硬件设计的能力,同时对EDA开发软件的使用也得到了很好的锻炼。
2025-09-03 11:28:15 3.25MB
1
本文档除了PPT相关课件外,还附带试题,MATLAB程序,课程分析等!《数学软件与实验》是继《数学分析》和《高等代数》等课程后开设的独立实验课程,既是理论教学的深化和补充,也是科学研究的导引和支持,充分利用计算机和软件,具有较强的实践性,是数学类等专业学生的选修课。目的是培养学生了解数学基本方法在实际生活中的应用,能够运用基本的现代计算工具高效求解科学与工程问题,基本具备应用数学方法和数学软件解决实际问题的基本技能。
1
吸气式脉冲爆震发动机是一种利用周期性爆震波产生推力的脉冲式喷气发动机,其核心工作原理是利用间歇产生的爆震波产生高温高压燃气。与传统的喷气发动机相比,吸气式脉冲爆震发动机的主要优点在于其爆震燃烧过程非常迅速,能够产生更大的能量密度。根据氧气的来源不同,脉冲爆震发动机可以分为吸气式脉冲爆震发动机(PDE)和脉冲爆震火箭发动机(PDRE)两种类型。PDE主要用于大气层内的飞行,因为它从空气中获得氧化剂;而PDRE则适用于外层空间飞行,因为它自带氧化剂。 在吸气式脉冲爆震发动机的研发过程中,进气系统的设计至关重要,因为它直接影响到发动机的性能和运行效率。进气系统包括进气道、混合室、点火室和爆震室,必须能够高效地将空气吸入并和燃料混合。在实验中,研究者设计并制造了一个吸气式无阀脉冲爆震发动机模型机,其进气系统可以模拟亚音速自由来流的条件。 实验中对不同进气系统下的总压恢复系数、流量系数和流动阻力进行了测量。这些参数对于评估进气系统的性能至关重要,因为它们决定了发动机能够从空气中吸入多少空气、空气与燃料的混合效率以及整体的流动特性。在实验中,研究者采用了起爆性较差的汽油和空气作为推进剂,并且使用低于50mJ的点火能量实现了多种进气系统下模型机的多循环单级起爆。这样的实验结果表明模型机的起爆性能良好,能够在较低能量的点火条件下正常工作。 实验还研究了爆燃向爆震转变过程(DDT)以及操作频率对模型机压力时域变化的影响。DDT过程对于脉冲爆震发动机的工作至关重要,因为它决定了能否在发动机内部成功转换为爆震模式。研究者发现,在P6点(即点火器的位置)处,压力峰值的振荡随着操作频率的增加而增强。此外,DDT的完成发生在P6之前,DDT距离大约为0.9米。 进气道技术是实现吸气式脉冲爆震发动机的另一个关键问题。将非稳态的PDE和稳态的进气道结合起来是一项挑战。在这方面,Butuk等人认为,关键问题之一是如何将非稳态的PDE和稳态的进气道结合起来。Yang等人进行了一系列的数值模拟来研究PDE进气道内的气动性能和对下游扰动的响应。Falempin则通过单次试验来研究相关问题。 吸气式脉冲爆震发动机进气系统实验的研究为这一新型发动机的发展提供了重要的实验数据和技术支持。通过设计和制造包括进气系统在内的模型机,测量关键参数,并分析DDT过程和操作频率的影响,研究者能够更好地理解这种发动机的工作特性,为未来的设计优化和性能提升奠定了基础。
2025-09-01 23:57:27 609KB 首发论文
1