YOLOv5是一种高效、准确的目标检测模型,全称为"YOLO (You Only Look Once) version 5"。它在计算机视觉领域广泛应用,特别是在实时物体检测方面表现出色。结合PyQt5,我们可以创建一个可视化界面,使用户能够方便地进行视频和摄像头的实时检测。 PyQt5是一个Python绑定的Qt库,提供了丰富的图形用户界面(GUI)工具包,用于开发跨平台的应用程序。将YOLOv5与PyQt5结合,我们可以构建一个交互式的应用,用户可以通过界面选择视频文件或开启摄像头,进行实时目标检测。 在这个可视化界面中,用户可以预设一些参数,例如选择不同的YOLOv5模型版本(如YOLOv5s、YOLOv5m、YOLOv5l等,不同版本在速度和精度上有所取舍),设置检测阈值以控制输出结果的精度与数量,以及调整其他相关检测参数。此外,程序还会显示每个检测到的物体的位置信息(以边界框的形式)和对应的类别信息。 在实际应用中,YOLOv5通过神经网络模型对输入图像进行处理,预测出图像中可能存在的物体及其坐标和概率。然后,这些信息会被转换成易于理解的可视化元素,比如彩色框框和文字标签,展示在视频画面上。对于摄像头输入,这种实时反馈使得模型的使用更为直观和便捷。 在实现这个功能时,开发者需要熟悉深度学习模型的推理过程,以及如何将模型的输出转换为GUI可展示的数据。PyQT5的QGraphicsView和QGraphicsScene组件可以用来绘制边界框和标签,而OpenCV则可以帮助处理视频流和图像显示。 文件“yolov5-pyqt5”很可能包含了实现这个功能的相关代码,包括YOLOv5模型的加载、图像预处理、模型推理、结果解析、以及PyQT5界面的构建和事件处理。开发者可能需要对这些代码进行理解和修改,以适应特定的需求或优化性能。 结合YOLOv5和PyQT5,我们可以创建一个强大的目标检测工具,不仅能够处理静态图像,还能实时处理视频流,提供直观的物体检测结果。这在监控、自动驾驶、智能安防等领域有着广泛的应用前景。同时,这也对开发者提出了较高的技术要求,需要掌握深度学习、计算机视觉、Python编程以及GUI设计等多个方面的知识。
2025-05-19 09:47:07 108.25MB
1
基于WDM驱动的可播放多种格式视频及图片的虚拟摄像头
2025-05-15 15:18:10 10.71MB 虚拟摄像头
1
在IT领域,尤其是在网络视频监控系统中,"大华摄像头播放插件"是一个重要的工具,它解决了在Chrome浏览器上直接播放RTSP格式视频流的问题。RTSP(Real Time Streaming Protocol)是一种广泛用于视频流传输的协议,尤其在IP摄像头设备中常见。然而,由于Chrome浏览器的安全策略,它不直接支持RTSP流的播放,这就需要借助特定的插件来实现。 该插件专为Chrome的最新版本设计,确保用户能够在其浏览器中无缝观看大华摄像头的实时视频。大华是一家知名的安防设备制造商,其产品线包括各种类型的摄像头,广泛应用于家庭、商业场所以及工业环境中。这个插件的出现,使得用户无需依赖第三方软件或切换浏览器就能查看监控画面,提高了便利性。 "node-v14.12.0-x64.msi"文件是Node.js的安装程序,这是一个流行的JavaScript运行环境,用于构建服务器端和命令行工具。在这个场景中,Node.js可能是用来开发或运行插件的后端支持,因为JavaScript在Web开发中的广泛使用,它可以方便地处理HTTP请求和实时数据流。 "jquery-demo源码.rar"包含的是jQuery库的示例代码。jQuery是一个轻量级的JavaScript库,简化了DOM操作、事件处理和Ajax交互等任务。在这里,jQuery可能被用来增强插件的用户界面交互,如播放、暂停、快进、快退等控制功能。 "插件demo"很可能是一个已经编译好的插件实例或者包含插件的演示项目,用户可以下载并运行,以便快速了解如何使用这个插件。通过运行这个demo,用户可以直接在Chrome浏览器上体验RTSP流的播放,从而验证插件的功能和兼容性。 这个插件通过克服Chrome浏览器的限制,为大华摄像头用户提供了一种在最新版Chrome上直接播放RTSP流的解决方案,减少了对额外软件的依赖,并结合了Node.js和jQuery的技术优势,提升了用户体验。用户只需按照提供的步骤安装和运行demo,就能在自己的环境下测试和使用这个插件。这是一项在现代Web技术与传统视频流协议之间架起桥梁的创新实践。
2025-05-15 11:38:03 152.6MB chrome rtsp 大华摄像头
1
标题中的“RK3588上部署yolov5s模型源码(实时摄像头检测)+部署说明文档”指的是在Rockchip RK3588处理器上实现YoloV5s深度学习模型的实时摄像头物体检测应用。这是一个硬件加速的AI推理项目,其中包含了源代码和详细的部署说明。 RK3588是Rockchip公司推出的一款高性能、低功耗的系统级芯片(SoC),主要应用于智能物联网、边缘计算和人工智能设备。它集成了多核CPU、GPU以及神经网络处理单元(NPU),为AI应用提供了强大的计算能力。 YoloV5s是You Only Look Once (YOLO)系列的第五版的一个变体,专门优化了速度,适用于实时物体检测任务。YOLO算法以其高效和准确性在计算机视觉领域广泛应用,尤其在实时视频流处理中。 部署YoloV5s模型到RK3588上,通常需要以下步骤: 1. **模型转换**:将预训练的YoloV5s模型转换为适合RK3588 NPU运行的格式。这可能涉及到使用工具如ONNX或TensorRT将模型转换为特定的硬件优化格式。 2. **SDK集成**:下载并安装Rockchip提供的开发套件,包括驱动程序、编译器、SDK等。这些工具通常包含用于与NPU交互的API,可以用来编写源代码来加载和执行模型。 3. **源码编写**:根据提供的源码,创建一个应用程序,该程序能够捕获摄像头输入,将图像数据传递给NPU进行物体检测,然后将结果显示回显示器。这涉及到了图像处理、模型推理以及结果解析等环节。 4. **环境配置**:确保操作系统(如Linux)配置正确,包括库依赖、权限设置等。还需要配置好OpenCV库,用于摄像头访问和图像处理。 5. **性能优化**:利用NPU的硬件加速功能,调整模型的推理参数,如批处理大小、内存分配等,以达到最佳性能和功耗平衡。 6. **测试与调试**:在部署前,需要进行充分的测试,检查模型的准确性和实时性。如果发现问题,可能需要调整模型参数或者优化代码。 7. **部署说明文档**:部署说明文档会详细列出每一步操作,包括硬件连接、软件安装、环境配置、代码修改等,以便其他开发者或使用者能够按照步骤复现整个过程。 在提供的“npu”文件中,可能包含了针对RK3588 NPU的特定代码优化或接口封装,用于更高效地运行YoloV5s模型。用户需根据文档指导,结合源代码进行编译和调试,最终实现模型在RK3588上的实时物体检测应用。
2025-05-06 09:58:52 7.35MB
1
基于RK3588上部署yolov5s模型源码(实时摄像头检测)高分项目,含有代码注释,新手也可看懂,个人手打98分项目,导师非常认可的高分项目,毕业设计、期末大作业和课程设计高分必看,下载下来,简单部署,就可以使用。该项目可以直接作为毕设、期末大作业使用,代码都在里面,系统功能完善、界面美观、操作简单、功能齐全、管理便捷,具有很高的实际应用价值,项目都经过严格调试,确保可以运行! 基于RK3588上部署yolov5s模型源码(实时摄像头检测)高分项目基于RK3588上部署yolov5s模型源码(实时摄像头检测)高分项目基于RK3588上部署yolov5s模型源码(实时摄像头检测)高分项目基于RK3588上部署yolov5s模型源码(实时摄像头检测)高分项目基于RK3588上部署yolov5s模型源码(实时摄像头检测)高分项目基于RK3588上部署yolov5s模型源码(实时摄像头检测)高分项目基于RK3588上部署yolov5s模型源码(实时摄像头检测)高分项目基于RK3588上部署yolov5s模型源码(实时摄像头检测)高分项目基于RK3588上部署yolov5s模型源码(实时摄
2025-05-06 09:51:19 7.35MB 源码 yolov5 毕业设计 期末大作业
1
在本文中,我们将深入探讨如何使用QT C++和FFmpeg库来调用USB摄像头,实现实时显示视频流,并进行H264编码的视频录制。FFmpeg是一个强大的开源多媒体处理框架,支持多种编码、解码、转换和流化功能。QT C++则是一个流行的跨平台应用程序开发框架,提供了丰富的图形用户界面(GUI)工具和系统访问接口。 确保你的开发环境中已经安装了QT和FFmpeg库。对于FFmpeg,你需要下载源代码并按照官方文档编译安装,确保配置时包含了所需的编解码器和库,例如libavformat、libavcodec、libavutil和libavdevice,这些是与设备输入输出和编码解码相关的组件。 在QT项目中,你需要引入FFmpeg的头文件和链接库。这可以通过在.pro文件中添加以下行实现: ```cpp INCLUDEPATH += /path/to/ffmpeg/include LIBS += -L/path/to/ffmpeg/lib -lavformat -lavcodec -lavutil -lavdevice ``` 接下来,创建一个QT窗口,用于显示来自摄像头的视频流。可以使用QVideoWidget或QOpenGLWidget作为显示视图。创建一个QThread子类来处理视频捕获和编码任务,以避免阻塞主线程。在该线程中,你可以使用FFmpeg的`avdevice_open_input()`函数打开USB摄像头,然后使用`avformat_find_stream_info()`获取流信息。 ```cpp AVFormatContext *fmtCtx = nullptr; if (avformat_open_input(&fmtCtx, "video://0", nullptr, nullptr) != 0) { // 错误处理 } if (avformat_find_stream_info(fmtCtx, nullptr) < 0) { // 错误处理 } ``` 找到摄像头的视频流后,你需要创建一个AVCodecContext来配置编码参数。H264编码可以通过查找名为"libx264"的编码器来实现。之后,使用`avcodec_open2()`打开编码器。 ```cpp AVCodec *codec = avcodec_find_encoder(AV_CODEC_ID_H264); AVCodecContext *encCtx = avcodec_alloc_context3(codec); // 配置编码参数... if (avcodec_open2(encCtx, codec, nullptr) < 0) { // 错误处理 } ``` 为了实时显示视频流,创建一个QImage从AVFrame中解析像素数据,然后更新QVideoWidget或QOpenGLWidget。同时,你还需要创建一个输出文件,使用`avio_open()`打开,`avformat_write_header()`写入文件头,然后在每一帧编码后使用`av_interleaved_write_frame()`将编码后的数据写入文件。 ```cpp AVOutputFormat *outFmt = av_guess_format("mp4", "output.mp4", nullptr); AVFormatContext *outFmtCtx = nullptr; avformat_alloc_output_context2(&outFmtCtx, outFmt, nullptr, "output.mp4"); if (avio_open(&outFmtCtx->pb, "output.mp4", AVIO_FLAG_WRITE) < 0) { // 错误处理 } avformat_write_header(outFmtCtx, nullptr); while (捕获视频帧) { // 编码和显示帧... AVPacket pkt; av_init_packet(&pkt); pkt.data = nullptr; pkt.size = 0; avcodec_encode_video2(encCtx, &pkt, frame, &gotPacket); if (gotPacket) { pkt.stream_index = videoStreamIndex; av_interleaved_write_frame(outFmtCtx, &pkt); } } av_write_trailer(outFmtCtx); ``` 别忘了在完成后释放所有资源,关闭输入和输出文件上下文,以及关闭编码器和解码器上下文。 通过以上步骤,你就能在QT C++环境中利用FFmpeg调用USB摄像头,显示视频流,并以H264编码保存为MP4格式的视频文件。这个过程涉及了多媒体处理、多线程编程、文件I/O和编码解码等多个方面的知识,对于深入理解QT和FFmpeg的使用非常有帮助。在实际开发中,可能还需要考虑性能优化、错误处理和用户交互等方面的问题,以提供更好的用户体验。
2025-05-04 17:06:09 111.06MB ffmpeg
1
· 功能说明:代码实现了基于YOLO模型的摔倒行为实时检测,当连续检测到摔倒的帧数超过设定阈值时触发报警。 · · 过程说明:通过摄像头获取视频流帧数据,利用YOLO模型进行目标检测,统计摔倒行为的连续帧数,并在达到报警条件时触发提示或报警逻辑。 基于YOLO模型的摔倒行为实时检测技术是一种利用深度学习方法实现的视觉监测系统,其主要功能是在实时视频流中检测人的摔倒行为,并在识别到摔倒动作后触发报警。这项技术在老年人居家照护、公共场所安全监控等领域具有广泛的应用前景。YOLO模型(You Only Look Once)是一种流行的实时对象检测算法,它能够在单一网络中同时进行目标定位和分类,具有速度快、精度高的特点,非常适合于实时视频分析场景。 YOLO模型的摔倒行为实时检测流程主要包括以下几个步骤:系统通过摄像头设备获取实时视频流的帧数据;将获取的视频帧输入到YOLO模型中进行目标检测,得到包含类别ID、置信度和边界框信息的检测结果;接下来,系统会检查检测结果中是否存在摔倒行为(即类别ID为设定的摔倒类别标识),并统计连续检测到摔倒行为的帧数;当连续帧数超过设定的阈值时,系统将触发报警机制,如在视频中叠加报警提示文字或执行其他报警逻辑,如发送通知到远程设备。 代码实现方面,需要进行模型初始化、视频流读取、YOLO模型预测、摔倒行为判断与报警提示的绘制等操作。具体来说,首先需要安装YOLOv5等模型库,并加载预训练的模型文件;然后,初始化摄像头视频流,并设置摔倒行为的类别标识和报警阈值;在循环读取视频帧的同时,利用YOLO模型进行实时目标检测,并根据检测结果判断是否为摔倒行为;如果检测到摔倒行为,则增加摔倒帧数计数器,并在满足报警条件时输出报警提示;显示处理后的视频,并允许用户通过按键退出程序。 在技术应用中,此类实时摔倒检测系统需要考虑算法的准确性和鲁棒性,例如通过优化YOLO模型训练过程中的数据集和参数设置,以提高对摔倒行为识别的准确率,并减少误报和漏报的情况。同时,系统也应具备良好的可扩展性和易用性,使得非专业人员也能简单快捷地部署和使用。
2025-04-28 19:57:34 13KB yolo
1
17 16届智能车十六届国二代码源程序,基础四轮摄像头循迹识别判断。 逐飞tc264龙邱tc264都有 能过十字直角三岔路环岛元素均能识别,功能全部能实现 打包出的龙邱逐飞都有,代码移植行好,有基础的小伙伴可以参考学习,不用问我带不带指导,压缩包里有视频讲解。 本代码只供参考学习使用 ——————————————————————— 16 智能车十六B车模 17 智能车十七C车模 逐飞tc264总转风 采用八领域算法,全元素识别,十字拐点三岔路圆环之间爬坡出入库。 基础四轮摄像头,代码注释清晰。 适合小白上手哦。 开源是为了让大家更好的学习和参考哦 本代码只做学习使用不直接作为比赛代码i
2025-04-27 21:53:56 596KB
1
内容概要:本文详细介绍了如何使用Python构建一个完整的双目三维重建系统。首先,通过双目摄像头采集图像并进行硬件连接,接着进行双目标定和立体校正,确保图像无畸变并对齐。然后,利用SGBM算法和WLS滤波器进行视差计算,提高视差图的质量。最后,通过Open3D生成并显示点云,完成从二维图像到三维空间的转换。文中还提供了许多实战技巧,如标定失败的解决办法、视差图断层的处理以及点云降采样的方法。此外,系统还集成了深度学习模型用于立体匹配,进一步提升了系统的鲁棒性和精度。 适合人群:具有一定编程基础和技术背景的研发人员,尤其是对计算机视觉、三维重建感兴趣的开发者。 使用场景及目标:适用于需要进行三维重建的应用场景,如机器人导航、虚拟现实、增强现实等领域。主要目标是帮助读者掌握双目三维重建的完整流程,能够独立搭建和优化自己的三维重建系统。 其他说明:本文不仅提供详细的代码实现,还包括了许多实战经验和优化技巧,帮助读者避免常见错误并提高系统的性能。同时,附赠了一些常用的点云处理算法,方便读者进行二次开发。
2025-04-25 16:14:09 1.36MB
1
PCA,即主成分分析(Principal Component Analysis),是一种广泛应用于数据降维的技术,尤其在机器学习和计算机视觉领域中。在本项目中,我们将探讨如何利用PCA和MATLAB来实现一个实时的人脸识别系统,该系统将通过网络摄像头捕获图像,并进行人脸识别。 PCA的主要目标是将高维数据转换为一组线性不相关的低维向量,这些向量被称为主成分。在人脸识别中,这可以用来减少面部特征的复杂性,同时尽可能保留原始信息。PCA通过对数据进行正交变换来实现这一点,使得数据的新坐标系是按照方差大小排列的,从而达到降维的效果。 在MATLAB中,我们可以使用` princomp `函数来执行PCA。这个函数接受一个数据矩阵作为输入,返回一组主成分和相应的方差。对于人脸识别,我们通常会先对人脸图像进行预处理,如灰度化、归一化,然后将它们构建成一个矩阵,每个图像对应矩阵的一行。 在实时人脸识别中,网络摄像头捕获的每一帧图像都会被送入系统。MATLAB提供了` videoinput `函数来捕获视频流,我们可以设置帧率和分辨率以适应我们的应用需求。一旦图像被捕获,就需要进行人脸检测,常用的算法有Haar级联分类器或Dlib库的HOG特征。 人脸检测后的结果会被裁剪成单个人脸图像,然后应用PCA进行特征提取。在这个阶段,我们通常会保留前几个具有最大方差的主成分,因为它们包含了大部分的信息。这些特征向量可以用于构建一个特征空间,在这个空间中,相似的人脸将更接近。 接下来,我们需要一个训练集来建立识别模型。这个训练集包含已知个体的人脸图像,经过PCA处理后得到的特征向量可以用来构建识别模型,比如使用k-最近邻(k-NN)或者支持向量机(SVM)算法。 在实时识别过程中,新捕获的图像会经过相同的PCA处理,然后在特征空间中与训练集中个体的特征向量进行比较,找出最匹配的个体,从而实现人脸识别。 压缩包中的` Main.zip `可能包含了MATLAB代码示例,包括数据预处理、PCA实现、人脸检测、特征提取、模型训练以及实时识别的完整流程。解压并运行这些代码可以帮助理解PCA在实际项目中的应用,同时也提供了动手实践的机会。 总结来说,本项目展示了如何结合PCA和MATLAB实现一个实时人脸识别系统,通过网络摄像头捕获图像,利用PCA进行特征降维,再结合合适的识别算法进行身份验证。这个过程涵盖了图像处理、机器学习以及计算机视觉等多个领域的知识点,对于理解PCA在实际应用中的作用以及提升MATLAB编程技能都有极大的帮助。
2025-04-21 19:40:21 3KB matlab
1