最小二乘法是先将方程自变量与因变量化为系数矩阵X,再求该矩阵的转置矩阵(X1),接着求矩阵X与他的转置矩阵的X1的乘积(X2),然后求X2的逆矩阵。最后整合为系数矩阵W,求解后分别对应截距b、a1、和a2。可见计算一个矩阵的逆是相当耗费时间且复杂的,而且求逆也会存在数值不稳定的情况。 梯度下降法迭代的次数可能会比较多,但是相对来说计算量并不是很大。且其有收敛性保证。故在大数据量的时候,使用梯度下降法比较好。 梯度下降法 import numpy as np from matplotlib import pyplot as plt from mpl_toolkits.mplot3d import
2021-11-11 10:24:37 135KB 回归 多元线性回归 最小二乘法
1
主要是用于本人文章所支撑的代码
1
C++/Opencv实现的FFD形变+梯度下降法图像配准算法
2021-11-02 17:04:32 79.34MB 图像配准 FFD自由形变 梯度下降法 C++
主要介绍了Python编程实现线性回归和批量梯度下降法代码实例,具有一定借鉴价值,需要的朋友可以参考下
1
梯度下降法;用实力分析;
2021-10-28 20:11:54 1.39MB 梯度下降 人工智能
保守值法matlab代码GD方法 梯度下降法 说明:该存储库包含不同版本的梯度下降算法的实现。 版权所有(c)2020 Behrad Soleimani保留所有权利 接触: 日期:2020年4月25日 要求:在Matlab R2019a版本中实现,但应在大多数版本上运行。 内容: main.m:主脚本。 GradDescent.m:带有(回溯)线搜索的梯度下降。 GradDescent_BB.m:使用Barzilai-Borwein更新的梯度下降。 GradDescent_Nesterov.m: Nesterov加速梯度下降。 ProjGradDescent.m:投影梯度下降。 LipschitzEstimation.m: Lipschitz常数估计函数。 LogisticRegression.m: Logistic回归目标函数。 DualSVM.m:对偶软SVM目标函数。 说明:简单易用。 将所有代码下载到目录中并运行main.m,这将生成一个如下所述的示例。 要单独使用功能,请查看功能说明。 例子: 在此示例中,我们考虑带有二进制标签的逻辑回归问题。 为了校准样本,我们通过梯度下降
2021-10-28 17:51:32 131KB 系统开源
1
这是机器学习中最常见的模型--线性回归的python实现,其中包含了最小二乘法和梯度下降法两种拟合算法
1
Python编写,模拟线性回归模型训练,通过采样数据、计算误差、计算梯度、梯度更新等步骤实现线性回归模型训练。
2021-10-12 14:16:39 3KB Python 梯度下降法 线性回归
1
梯度下降法;变分不等式;matlab代码;献血竞争
2021-10-06 10:00:20 583KB 变分不等式 梯度下降法1
采用Matlab实现梯度下降各种优化算法,进行函数逼近,优化算法包括冲量法、NAG、Aagrad、RMSProp、Adam算法。可以通过该实验进行各种算法的比较,可以自行调整参数查看实验效果。
1