"现代通信网实验报告" 一、 RIP 路由协议实验 1. RIP 路由协议的配置方法:RIP 是距离矢量路由协议,它使一个自治系统中的所有路由器与相邻路由器定期交换和更新路由信息。根据每个相邻路由器发送过来的 RIP 报文,基于距离矢量算法,使得从每个路由器到每个目的网络的路由都是最短的(即跳数最小)。 2. RIP 路由协议的实验配置:使用 AR28 路由器和 MSR830 路由器,配置 RIP 路由协议,使得路由器之间可以相互通信。 3. RIP 路由协议的实验结果:Ping 网络中的一些路由结果,证明了 RIP 路由协议的正确配置和工作。 二、 OSPF 路由协议实验 1. OSPF 路由协议的配置方法:OSPF 是链路状态路由协议,它使用洪泛法和链路状态算法来确定路由。OSPF 协议的优先级比较高,因此它可以 override 其他路由协议。 2. OSPF 路由协议的实验配置:使用 AR28 路由器和 MSR830 路由器,配置 OSPF 路由协议,使得路由器之间可以相互通信。 3. OSPF 路由协议的实验结果:Ping 网络中的一些路由结果,证明了 OSPF 路由协议的正确配置和工作。 三、 路由协议的选择和优先级 1. 路由协议的选择:根据网络的大小和复杂度,可以选择不同的路由协议,如 RIP、OSPF、EIGRP 等。 2. 路由协议的优先级:不同的路由协议有不同的优先级,如 OSPF > 静态路由 > RIP。优先级高的路由协议将 override 优先级低的路由协议。 四、 实验结论 1. RIP 和 OSPF 路由协议的配置和工作原理。 2. 路由协议的选择和优先级的重要性。 五、 思考题 1. 能否在路由器上同时配置两种路由协议,如果能配置,哪一种路由协议会生效。 答:可以同时配置。优先级排序:OSPF>静态路由>RIP,由于 OSPF 协议的优先级比较高,因此 OSPF 会生效。 六、 实验报告总结 本实验报告详细介绍了 RIP 和 OSPF 两种路由协议的配置和工作原理,并讨论了路由协议的选择和优先级的重要性。本实验报告对现代通信网实验报告的要求进行了详细的说明和解释。
2025-06-20 13:07:28 967KB
1
在现代工业制造流程中,铝片作为重要的基础材料广泛应用于航空、汽车、建筑等领域。然而,在铝片的生产和加工过程中,表面可能产生各种缺陷,这些缺陷可能会影响产品的使用性能和寿命。因此,铝片表面缺陷检测技术对于保障产品品质和提升生产效率至关重要。本文介绍了一套针对铝片表面工业缺陷的检测数据集,该数据集以VOC和YOLO格式提供,共计400张jpg格式的铝片表面图片及其对应的标注文件。 数据集特点: 1. 数据集数量:包含400张铝片表面图片。 2. 标注格式:遵循Pascal VOC和YOLO两种通用的目标检测标注格式。 3. 标注内容:每张图片均采用矩形框标注出铝片表面的缺陷区域。 4. 类别与数量:标注涉及四个类别,具体包括“ca_shang”(擦伤)、“zang_wu”(脏污)、“zhe_zhou”(折皱)、“zhen_kong”(针孔),各分类的缺陷数量分别为270、456、124和212。 5. 标注工具:使用广泛认可的LabelImg工具进行标注。 6. 标注规则:所有缺陷区域采用矩形框进行标注。 应用领域: 1. 制造业质量控制:铝片生产商和使用者可用于提升产品质量检测能力。 2. 计算机视觉研究:为研究者提供真实的工业视觉问题数据集,便于算法开发和评估。 3. 机器学习与深度学习:作为目标检测模型的训练和测试素材,推动AI技术在工业检测领域的应用。 注意事项: 尽管数据集能够提供准确的缺陷标注示例,但它不保证使用这些数据训练出的模型的准确度和性能。因此,本数据集主要用于提供准确标注的训练材料,用于工业缺陷检测模型的开发与训练。研究者和工程师在使用数据集进行模型训练时,需自行评估模型效果并调整模型参数。 对于深度学习领域的研究者和工程师而言,该数据集是一个宝贵的资源,能够辅助他们在铝片表面缺陷检测领域进行算法开发与优化。随着深度学习技术的不断进步,未来将能够实现更加高效、准确的铝片表面缺陷检测,进一步推动工业生产自动化和智能化进程。
2025-06-19 20:59:27 769KB 数据集
1
内容概要:本文详细介绍了如何利用昆仑通态MCGS触摸屏、西门子S7-200 Smart PLC和台达VFD-M系列变频器构建一套完整的工业自动化控制系统。主要内容涵盖硬件架构搭建、PLC程序编写、MCGS组态配置以及常见问题解决方案。文中提供了详细的接线示意图、PLC编程代码示例、MCGS组态技巧,并针对可能出现的问题给出了具体的避坑指南。 适用人群:从事工业自动化领域的工程师和技术人员,特别是对PLC编程、HMI组态和变频器控制有一定基础的人群。 使用场景及目标:适用于中小型自动化项目的实施,旨在帮助技术人员掌握昆仑通态MCGS、西门子S7-200 Smart PLC和台达变频器之间的通信与控制方法,提高生产效率和稳定性。 其他说明:文章不仅提供了理论指导,还结合实际案例进行了深入剖析,确保读者能够快速上手并在实践中灵活运用所学知识。此外,作者还分享了一些宝贵的实战经验和调试技巧,有助于解决实际工作中可能遇到的各种问题。
2025-06-19 19:41:32 366KB
1
在现代工业自动化领域,数控系统加工线的高效运转依赖于机器人与设备间的精确协调。作为自动化技术的重要组成部分,KUKA机器人广泛应用于各类生产线中,其与数控系统的交互尤为关键。本文件“ROB交互信号表(外部自动配置)-数控系统加工线模板.xlsx”提供了一个精准的交互信号表模板,旨在帮助工程师和操作人员理解和配置机器人与数控系统间的数据交换机制,确保加工流程的顺畅和精确。 该交互信号表模板具有以下几个关键知识点: 1. 信号表的基本构成:信号表一般包括信号名称、信号类型、信号方向、信号描述、信号起始点、信号终点、信号格式等关键信息。这些信息帮助工程师快速了解每个信号的作用及其在系统中的流动路径。 2. 信号类型和方向:信号类型通常分为数字信号(如0/1、开/关)和模拟信号(如电压、电流等)。信号方向则指出信号是从机器人发送到数控系统(输出),还是从数控系统发送到机器人(输入)。 3. 信号配置的细节:在信号表中,每个信号的详细配置信息需要被准确记录,包括信号触发的条件、预期的响应、时间参数以及任何特定的协议或格式要求。 4. 外部自动配置:该模板可能包含对于如何通过外部系统自动配置信号参数的说明,这在自动化生产线中非常关键,因为它能够减少人为错误,提高配置效率。 5. 与数控系统的交互:数控系统是加工线的核心,交互信号表需要详细记录机器人与数控系统之间的交互信号,包括但不限于启动信号、停止信号、速度控制信号、位置同步信号等。 6. 异常处理机制:在信号表中,应当包含有关异常信号的处理机制。例如,当机器人检测到加工错误或系统故障时,相应的信号应如何被处理,以确保设备安全和生产的连续性。 7. 使用场景与范例:文件中提供的使用范例将帮助工程师理解如何在实际操作中应用该交互信号表模板。这些范例将涵盖从简单的信号交换到复杂交互流程的完整案例。 8. 工业通讯协议:模板可能还涉及KUKA机器人支持的各种工业通讯协议(如Profinet、EtherCAT等),以及如何在信号表中实现这些协议的配置。 9. 安全性要求:考虑到机器人和数控系统的交互涉及到操作安全,信号表中必须明确指出安全相关的信号及配置,如紧急停止信号、故障检测信号等。 10. 兼容性和可扩展性:模板需要设计得既能够满足当前系统的兼容性,又具备一定的可扩展性,以便未来的系统升级或扩展。 该交互信号表模板的使用,对于提升工业自动化加工线的生产效率和产品质量具有重要意义。通过标准化信号配置和交互流程,可以大幅度降低系统集成的难度,提高生产过程的可靠性,最终实现智能化、自动化的生产目标。
2025-06-19 17:22:12 86KB 工业自动化
1
内容概要:本文详细介绍了一种基于Matlab的瓶子缺陷检测系统的设计与实现。该系统通过图像采集、预处理(如灰度化、去噪)、边缘检测(采用Canny算法)、形态学操作(如膨胀、腐蚀),以及缺陷识别与分类(基于边缘长度、面积等特征)等步骤,实现了高效、精确的质量检测。文中还讨论了针对不同类型瓶子(如透明玻璃瓶、磨砂瓶)的具体优化措施,以及如何应对生产线上的特殊挑战(如反光、水渍等)。 适合人群:从事工业自动化、机器视觉领域的工程师和技术人员,尤其是希望了解或应用Matlab进行图像处理和缺陷检测的人群。 使用场景及目标:适用于各类玻璃制品制造企业的质量控制部门,旨在提高检测精度和效率,减少人为因素导致的误差,确保产品符合质量标准。同时,也为研究者提供了一个完整的案例分析,帮助他们理解和掌握图像处理的基本方法及其在实际工程中的应用。 其他说明:文中提供的代码片段可以直接运行并测试,便于读者快速上手实践。此外,作者分享了许多实践经验,包括参数选择的经验值、常见错误及解决方案等,有助于读者更好地理解和改进自己的项目。
2025-06-19 11:34:22 643KB
1
西北工业大学数据库概论试题答案.doc
2025-06-18 07:37:57 49KB
1
企业管理过程中,全面预算管理与成本管理相互促进、相辅相成。针对成本管理及全面预算管理的现状及存在的问题,以陕西某化学工业有限公司(XY公司)为案例,开展了优化成本管理及全面预算管理的对策探讨。首先介绍了全面预算管理和成本管理的基本理论及两者的关系,并针对公司现状及存在的问题,提出了优化全面预算管理和成本管控的思路和措施。通过两种管理相结合的方式,形成科学、健全的管理模式,使企业在市场竞争中获得有利地位,实现企业发展的良性循环。
2025-06-17 17:40:59 1.1MB 行业研究
1
比较详细讲解优化方法的书 包括线性规划,二次规划,牛顿法,高斯-牛顿法,LM优化方法,以及内点法等等。
2025-06-16 20:06:39 3.5MB
1
机器视觉工业相机客户端MVS是为支持海康机器视觉相机产品而开发的软件应用程序,适用于所有海康机器视觉面阵以及线阵相机产品。 MVS包含了客户端,IP配置工具,固件升级工具,导入/导出属性工具、日志查看工具、网卡配置工具,驱动管理工具,系统信息工具,诊断工具,带宽管理工具,SDK和Demo。 操作系统:Windows 7/10/11 32/64bit 功能特性 1、网口和USB相机可自动搜寻同子网下连接的所有设备,CameraLink相机可手动搜寻所连接设备 2、支持查看和修改相机设备参数、搜索指定参数 3、支持同时连接、采集、预览多个相机 4、支持保存个人喜好参数配置以及整套设备参数方案 5、支持实时预览、图片截取、录像存储 6、网口相机支持修改IP配置方式、IP地址、子码掩码、默认网关 7、支持在线设备升级 8、支持GigE Vision动作指令 驱动下载安装:可以到海康机器人官网下载MVS安装 如有其他版本mvs,建议卸载后重新安装! 如装过MVFG等软件,建议卸载,MVFG已淘汰 如有其它问题可私信我
2025-06-16 18:52:00 284.69MB 海康相机 工业相机
1
### 微机原理与接口技术实验报告分析 #### 实验背景 本次实验是基于安徽工业大学陆勤老师的指导,旨在深入理解和掌握微机系统的原理及接口技术的实际应用。实验选取了微机系统中常用的三个器件——8253定时/计数器、8255并行接口芯片以及8259中断控制器进行综合实验。 #### 实验目的 1. **理解8253计数器的工作原理**:通过设置不同的工作模式来实现定时或计数功能。 2. **掌握8255并行接口的应用**:学习如何通过编程控制8255实现数据的输入输出操作。 3. **熟悉8259中断控制器的配置**:了解中断请求的处理机制,包括初始化设置和中断服务程序的设计。 #### 实验设备与环境 - 微机系统实验箱 - PC机 - 实验所需的软件开发环境 #### 实验内容 ##### 8253计数器实验 - **目标**:实现计数器1以方式0(硬件重装初值)计数,计满3个数后产生中断,并在中断发生5次后结束。 - **实验线路**:根据提供的电路图进行连线。 - **实验程序**:使用汇编语言编写程序实现上述功能。 - 初始化8259A中断控制器,设置为边沿触发、单片模式,且需要发送ICW4命令。 - 设置8253计数器1工作于方式0,计数初值为3,采用BCD编码。 - 控制8255A的各个端口工作模式,以便配合实验需求。 - 开启中断并进入循环等待状态,在此过程中,通过中断服务程序更新计数器值并判断是否达到指定次数。 ##### 8255并行接口实验 - **目标**:利用8255实现数据的输入输出操作。 - **实验程序**:在实验代码中可以看到8255A被配置为:A口方式0输出,C口上半部输出,B口方式0输出,C口下半部输出。通过这种方式,可以方便地实现数据的显示等功能。 ##### 8259中断控制器实验 - **目标**:学习8259A的初始化和中断服务程序设计。 - **实验程序**:实验中通过设置8259A的控制字来实现中断请求的处理。包括写入ICW1、ICW2、ICW3、ICW4等命令,这些命令用于初始化8259A的工作方式。此外,还设计了中断服务程序来响应由8253计数器产生的中断。 #### 实验步骤详解 1. **初始化8259A**: - 写入ICW1设置为边沿触发、单片模式。 - 写入ICW2设置中断向量。 - 写入ICW4设置为8086/8088系统兼容模式。 2. **配置8253计数器1**: - 发送控制字设定通道1为方式0,BCD编码,只读/写低字节。 - 设置计数初值为3。 - 开启中断。 3. **配置8255A**: - 设置A口为方式0输出,C口上半部输出,B口方式0输出,C口下半部输出。 4. **主程序流程**: - 跳转至`START0`处执行初始化操作。 - 进入无限循环`WATING`,等待中断发生。 - 当计数器计满时,触发中断。 - 中断服务程序`INTREEUP3`中更新计数器值,并检查是否达到指定次数。 - 如果达到指定次数,则清除中断标志,退出中断服务程序。 #### 结论 本实验通过实际操作加深了对8253定时/计数器、8255并行接口芯片以及8259中断控制器的理解和掌握。不仅学习了这些器件的基本原理,还掌握了它们的具体应用方法。通过对实验程序的编写和调试,进一步提高了编程能力和问题解决能力。这对于后续更复杂的微机系统设计具有重要意义。
1