闪电战-火炬动物园中的贝叶斯层 BLiTZ是一个简单且可扩展的库,用于在PyTorch上创建贝叶斯神经网络层(基于“)。 通过使用BLiTZ图层和utils,您可以以不影响图层之间的交互的简单方式(例如,就像使用标准PyTorch一样)添加非证书并收集模型的复杂性成本。 通过使用我们的核心权重采样器类,您可以扩展和改进此库,从而以与PyTorch良好集成的方式为更大范围的图层添加不确定性。 也欢迎拉取请求。 我们的目标是使人们能够通过专注于他们的想法而不是硬编码部分来应用贝叶斯深度学习。 Rodamap: 为不同于正态的后验分布启用重新参数化。 指数 贝叶斯层的目的 贝叶斯层上的权重采样 有可能优化我们的可训练重量 的确,存在复杂度成本函数随其变量可微分的情况。 在第n个样本处获得整个成本函数 一些笔记和总结 引用 参考 安装 要安装BLiTZ,可以使用pip命令: pip
2024-04-24 16:41:44 136KB pytorch pytorch-tutorial pytorch-implementation
1
Deep Learning With Python_中文版+英文版+代码 目前来看是最全的
2024-04-16 10:23:06 29.91MB PYTHON Deep
1
使用Python的动手深度学习算法 这是Packt发布的《 的代码库。 通过使用TensorFlow实施深度学习算法和广泛的数学知识 这本书是关于什么的? 深度学习是AI领域最受欢迎的领域之一,可让您开发各种复杂程度不同的多层模型。 本书涵盖以下激动人心的功能: 实施基础到高级的深度学习算法 掌握深度学习算法背后的数学 熟悉梯度下降及其变体,例如AMSGrad,AdaDelta,Adam和Nadam 实施循环网络,例如RNN,LSTM,GRU和seq2seq模型 了解机器如何使用CNN和胶囊网络解释图像 如果您觉得这本书适合您,请立即获取! 说明和导航 所有代码都组织在文件夹中。 该代码将如下所示: J_plus = forward_prop(x, weights_plus) J_minus = forward_prop(x, weights_minus) 这是您需要的本
2024-04-10 09:45:51 127.09MB python machine-learning deep-learning
1
语音活动检测项目 关键字:Python,TensorFlow,深度学习,时间序列分类 目录 1.11.21.3 2.12.2 5.15.2将5.35.4 去做 资源 1.安装 该项目旨在: Ubuntu的20.04 的Python 3.7.3 TensorFlow 1.15.4 $ cd /path/to/project/ $ git clone https://github.com/filippogiruzzi/voice_activity_detection.git $ cd voice_activity_detection/ 1.1基本安装 $ pip3 install -r requirements.txt $ pip3 install -e . 1.2虚拟环境安装 1.3 Docker安装 构建docker镜像: $ sudo make build (这可能
1
PyTorch中的MeshCNN SIGGRAPH 2019 MeshCNN是用于3D三角形网格的通用深度神经网络,可用于诸如3D形状分类或分割之类的任务。 该框架包括直接应用于网格边缘的卷积,池化和解池层。 该代码由和在支持下编写。 入门 安装 克隆此仓库: git clone https://github.com/ranahanocka/MeshCNN.git cd MeshCNN 安装依赖项: 1.2版。 可选: 用于训练图。 通过新的conda环境conda env create -f environment.yml (创建一个名为meshcnn的环境) SHREC上的3D形状分类 下载数据集 bash ./scripts/shrec/get_data.sh 运行训练(如果使用conda env首先激活env,例如source activate meshcnn ) bash ./scripts/shrec/train.sh 要查看训练损失图,请在另一个终端中运行tensorboard --logdir runs并单击 。 运行测试并导出中间池网格: bas
2024-04-02 16:20:14 3.54MB machine-learning computer-graphics pytorch mesh
1
matlab精度检验代码深度学习 这是针对KTH 2017的个别课程分配的存储库。此存储库中的代码主要在Matlab中完成,并且训练过程中涉及的操作(例如,梯度计算和参数更新)以一般的方式(低级)实现。 数据集 对于作业1-3 对于作业4 内容 作业1:具有多类输出的一层网络(测试准确度:40.42%) 报告:+ 作业2:具有多层输出的两层网络(测试准确度:54.06%) 报告:+ 作业3:具有多类输出的k层网络(测试准确度:54.8%) 报告:+ 作业4:香草RNN逐个字符地合成英文文本 报告:+
2024-03-29 04:08:13 184.2MB 系统开源
1
本资源是本人在使用pytorch过程中知识的总结与积累,主要包括以下内容: 1. 数据预处理 2. 梯度操作 3. 网络模型搭建 4. 保存模型参数 5. GPU使用问题 6. 遇到的巨坑
2024-03-28 21:40:10 1.19MB PyTorch Deep-Learning
1
强化学习 强化学习的学习代码,算法包括Q-Learning、DQN、DDQN、PolicyGradient、ActorCritic、DDPG、PPO、TD3、SAC。 使用说明 python版本: 3.10.13 依赖库:requirements.txt 安装依赖库:pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple/
2024-03-12 21:16:32 53.97MB
1
Chapter3 Online learning check 河南大学软件学院专业英语测试题答案Chapter3 Online learning check,助力你雨课堂平时分拿满分,加油哦!
2024-03-06 17:40:25 2.12MB 专业英语 河南大学 软件学院
1