MNIST / CIFAR10的预训练GAN,VAE +分类器 在pytorch中使用GAN / VAE建模的简单起点。 包括模型类定义+培训脚本 包括笔记本电脑,其中显示了如何加载预训练的网络/如何使用它们 用pytorch 1.0+测试 生成与数据集图像大小相同的图像 mnist 使用基于的体系结构生成MNIST数据集(28x28)大小的图像。 训练了100个纪元。 重量。 数据样本 dcgan样本 样品 为了与不那么复杂的体系结构进行比较,我还在文件夹中包含了一个预训练的非卷积GAN,它基于代码(训练了300个纪元)。 我还基于在文件夹中包含了经过预训练的LeNet分类器,该分类器可实现99%的测试准确性。 cifar10 cifar10 gan来自pytorch示例回购,并实现了DCGAN论文。 它只需要很小的改动就可以生成大小为cifar10数据集(32x32x3)的
2021-10-10 13:40:14 88.1MB python machine-learning statistics ai
1
变种火炬自动编码器 Pytorch中针对MNIST数据集的VAE实现 嘿大家! 在这里,我将展示我创建VAE来复制MNIST数据集的项目的所有代码 目录 基本信息 该项目的灵感来自Sovit Ranjan Rath的文章 技术领域 使用以下项目创建项目: Python版本:3.8.5 Pytorch版本:1.8.0 脾气暴躁:1.19.2
2021-10-10 13:32:56 5.4MB JupyterNotebook
1
VAE_GAN_PyTorch 生成模型的集合(VAE,CVAE,GAN,DCGAN)
2021-10-08 21:17:29 10KB Python
1
va 结点树变分自动编码器实现尝试 回购现在处于存档模式原始文件的工作源 我的叉子具有python3兼容性和一些性能改进
2021-09-29 10:54:07 3.19MB JupyterNotebook
1
[英语] 这个例子展示了如何在 MATLAB 中创建一个条件变分自动编码器 (VAE) 来生成数字图像。VAE 生成具有 MNIST 数据集样式的手绘数字。与变分自动编码器 (VAE) 不同的是,条件 VAE 可以输入要生成的类标签,可以合成更清晰的图像。条件GAN(生成对抗网络)也是合成图像的变量。来自VAE的合成图像往往会模糊,因为此类图像的损失值变低。使用GANs ,问题可能会得到解决。 https://jp.mathworks.com/matlabcentral/fileexchange/74921-conditional-gan-generative-adversarial-network-with-mnist [日本人]这个演示实现了一个条件变分自动编码器。与普通变分自编码器的不同之处在于,您可以指定要生成的图像的标签。这将允许您生成更清晰的图像。 由于VAE的机制,当生成的
2021-09-21 17:05:09 5MB matlab
1
这是文章关于变分自动编码器的中文代码注解 源代码来自于: : 环境要求: pip install requirements.txt 其他利用的资源: 转置卷积原理动态图: : 模型图片: : 由于本人水平有限,欢迎各位提出批评建议 公众号:BBIT
2021-09-16 14:29:01 2.1MB 系统开源
1
欧氏距离matlab代码具有变分自动编码器的q空间新颖性检测 该存储库包含本文的正式实现。 依存关系: Python3 茶野 千层面 麻木 科学的 Matlab的 方法: 在Matlab中实现了基于距离和密度的方法。 其他方法在python中实现。 用法: 要将建议的新颖性检测方法之一与您的数据一起使用,您应该: 在model / Data.py中实现数据加载方法 根据您的数据训练模型 运行建议的方法之一: # test_data = ... nd = NoveltyDetection ( model = 1 ) res = nd . compute_fast_novelty_scores ( test_data ) # ... 对于matlab方法,数据应首先以“ mat”格式保存: # normal_data = ..., test_data = ... nd = NoveltyDetection ( model = 1 ) latent_normal_data = nd . encode ( normal_data ) latent_test_data = nd . encode
2021-09-12 02:25:28 15KB 系统开源
1
TF-VAE-GAN-DRAW ,和TensorFlow实现。 跑 VAE / GAN: python main.py --working_directory /tmp/gan --model vae 画: python main-draw.py --working_directory /tmp/gan 深度卷积生成对抗网络在使用默认参数的10个星期后产生了不错的结果。 ###去做: 更复杂的数据。 添加 用空间变压器层替换当前的注意力机制
2021-09-10 11:10:56 13KB tensorflow draw recurrent-neural-networks gan
1
neuro-ode:具有Pytorch神经常微分方程实现的Jupyter笔记本
2021-07-14 15:48:43 2.18MB jupyter-notebook pytorch vae neural-ode
1
在PyTorch中实现不同的基于VAE的半监督和生成模型
2021-07-07 14:58:23 1.67MB Python开发-机器学习
1