设计了一种基于ARM与FPGA的便携式GNSS导航信号采集回放系统。该系统可采集复杂情况下的导航卫星信号,并且增益可控,为导航接收机测试提供了特定的信号源。系统将导航卫星信号经射频电路转换为数字中频信号,通过FPGA处理后保存至SATA硬盘。ARM处理器作为监控端发送指令至FPGA,控制FPGA进行数据采集与回放,同时接收监控接收机串口发送的报文,提取载噪比信息,并绘制载噪比柱状图。该系统ARM端基于嵌入式Linux系统开发,采用Qt4设计用户图形界面,可扩展及可移植性强,为系统的后续开发提供了保障。实验结果表明,该系统信号质量满足要求,ARM监控端数据处理时间在200 ms~500 ms之间,实时性良好。 该文介绍了一种基于ARM和FPGA的便携式全球导航卫星系统(Global Navigation Satellite System,简称GNSS)信号采集回放系统。该系统的主要目标是为导航接收机的测试提供一个灵活可控的信号源,尤其适用于复杂环境下的信号采集。 系统设计包括两个主要部分:射频模块和基带模块。射频模块主要任务是接收和处理射频信号。它使用MAX2769B芯片来实现多模导航信号的下变频,支持GPS、北斗、格洛纳斯和伽利略等卫星导航系统。此外,通过HMC472LP4数控衰减器实现增益控制,确保信号增益的精确调节。射频模块还包括C8051F230单片机和ATGM332D监控接收机,用于配置参数和监控信号质量。 基带模块由FPGA模块、ARM模块和基带底板组成。FPGA(Xilinx XC7K325TFFG900-2)处理来自射频模块的数字中频信号,并通过SATA接口将数据存储在固态硬盘(SSD)中。ARM处理器(Atmel SAMA5D31,基于Cortex-A5架构)作为系统监控端,通过SMC总线与FPGA通信,控制数据采集和回放,同时处理来自监控接收机的串口报文,提取载噪比信息并生成柱状图。ARM处理器运行嵌入式Linux系统,并利用Qt4框架构建用户友好的图形界面,增强系统的可扩展性和可移植性。 软件设计方面,FPGA程序主要负责数据流的管理和控制,而ARM端的软件则包含了系统控制、用户界面和数据分析功能。嵌入式Linux系统提供稳定的运行环境,SMC总线驱动使得ARM与FPGA之间的通信高效可靠。此外,基带底板的电源和时钟设计也是关键,确保了整个系统的稳定运行。 实验结果显示,该系统能够满足信号质量要求,ARM端的数据处理时间在200毫秒到500毫秒之间,具备良好的实时性。这一设计为导航接收机的研发提供了一个实用、灵活的测试工具,有助于提升接收机的性能验证和优化。随着中国北斗卫星导航系统的快速发展,这样的系统在中国市场上具有广阔的应用前景。
2024-11-14 23:29:32 348KB GNSS
1
在准备 FPGA 面试时,以下几个关键方面需重点关注。 基础概念方面 务必清晰理解 FPGA 与 ASIC 的区别,FPGA 灵活可重编程,适用于小批量和快速原型开发;ASIC 成本在大规模生产时占优且性能更优。要明白查找表(LUT)是 FPGA 实现逻辑的基础单元,其通过存储预先计算的值实现组合逻辑功能。 硬件结构领域 熟悉可配置逻辑块(CLB)的组成,包括多个 LUT、触发器等组件如何协同工作。知道输入输出块(IOB)能提供多种电气标准的接口,以及它在实现与外部设备高效连接中的作用。 设计流程要点 设计流程从使用 Verilog 或 VHDL 进行设计输入开始,到综合、实现、时序分析再到编程下载。综合是将高层次描述转化为门级网表,需了解如何设置约束条件以优化综合结果。在布局布线阶段,要明白这一步对设计性能的影响以及如何查看和优化布局布线结果。 编程与开发关键 对于 Verilog 和 VHDL,掌握它们的基本语法和编程风格。比如 Verilog 中阻塞赋值和非阻塞赋值的区别,以及在不同场景下的应用。VHDL 中实体与结构体的设计方式、信号与变量的合理运用等。 时序相关核心 建立时间
2024-11-09 17:19:05 38KB fpga开发 求职面试 fpga
1
24位、4通道模数转换、数据采集系统概述: 在过程控制和工业自动化应用中,±10 V满量程信号非常常见;然而,有些情况下,信号可能小到只有几mV。用现代低压ADC处理±10 V信号时,必须进行衰减和电平转换。但是,对小信号而言,需要放大才能利用ADC的动态范围。因此,在输入信号的变化范围较大时,需要使用带可编程增益功能的电路。 该电路设计是一种灵活的信号调理电路,用于处理宽动态范围(从几mV p-p到20 V p-p)的信号。该电路利用高分辨率模数转换器(ADC)的内部可编程增益放大器(PGA)来提供必要的调理和电平转换并实现动态范围。 该电路包含一个ADG1409多路复用器、一个AD8226仪表放大器、一个AD8475差动放大器、一个AD7192 Σ-Δ型ADC(使用ADR444基准电压源)以及 ADP1720稳压器。只需少量外部元件来提供保护、滤波和去耦,使得该电路具有高集成度,而且所需的电路板(印刷电路板[PCB])面积较小 适合宽工业范围信号调理的灵活模拟前端电路: 如上所示电路解决了所有这些难题,并提供了可编程增益、高CMR和高输入阻抗。输入信号经过4通道ADG1409 多路复用器进入 AD8226低成本、宽输入范围仪表放大器。AD8226低成本、宽输入范围仪表放大器。AD8226提供高达80dB的高共模抑制(CMR)和非常高的输入阻抗(差模800ΩM和共模400ΩM)。宽输入范围和轨到轨输出使得AD8226可以充分利用供电轨。 24位、4通道模数转换、数据采集系统附件内容截图:
2024-11-07 17:06:25 2.76MB 电路方案
1
通过Verilog对增量式编码器进行滤波,并精确计算位置和速度信息。
2024-11-06 15:04:02 6.25MB 增量式编码器 正交编码器 fpga verilog
1
HMC7044 是一款高性能时钟发生器芯片。 一、芯片配置 电源连接:确保正确连接芯片的电源引脚,包括 VDD 和 GND。通常需要稳定的电源供应以保证芯片正常工作。 输入时钟:根据设计需求,将合适的参考时钟信号连接到芯片的输入时钟引脚。输入时钟的频率和特性应符合芯片的规格要求。 控制接口:HMC7044 通常提供多种控制接口,如 SPI(Serial Peripheral Interface)或 I2C(Inter-Integrated Circuit)。通过这些接口,可以对芯片进行配置和控制。 SPI 配置:连接 SPI 总线的时钟、数据输入和数据输出引脚到相应的微控制器或控制电路。根据芯片的数据手册,了解 SPI 通信协议和寄存器地址,以便进行正确的配置。 I2C 配置:连接 I2C 总线的时钟线和数据线到微控制器或其他 I2C 主控设备。使用合适的 I2C 地址和命令来配置芯片的功能。 输出配置:根据应用需求,配置芯片的输出时钟参数,如频率、相位、占空比等。可以通过控制寄存器来设置这些参数。 二、使用说明 初始化:在使用 HMC7044 之前,需要进行初始化操作。这包括设置控制
2024-11-06 09:35:52 6.31MB FPGA
1
和BOM(pdf格式). Board AT91SAM9260.rar AT91SAM9260-EK Board 原理图,orcad格式.rar AT91SAM9260-EK Board BOM.pdf
2024-11-04 20:49:31 642KB AT91SAM9260-EK  Board orcad
1
【系统详解文档与演示视频链接:https://archie.blog.csdn.net/article/details/141318806?spm=1001.2014.3001.5502】元器件:DHT11、MQ2、STM32F103C8T6、SG90舵机、RC522频射模块、HC-SR04超声波模块、OLED、wifi模块、LED灯、蜂鸣器。功能简介:1、进出停车场时需要刷卡,进行一个记时、计费的功能。2、停车位配有超声波检测,主要识别车位是否被占用。3、车位区域配有OLED显示屏,用户可以通过显示屏看到空闲车位。4、车位配有车位灯。当用户找不到车位可以通过手机点亮车位灯5、停车场配有温湿度检测和烟雾检测模块。当环境发生异常状态。会触动紧急报警。6、停车场信息会通过Wi-Fi发送数据上传至阿里云。用户可以通过手机了解到停车场空闲车位和停车时间、费用。 优质项目,资源经过严格测试可直接运行成功且功能正常的情况才上传,可轻松copy复刻,拿到资料包后可轻松复现出一样的项目。本人系统开发经验充足,有任何使用问题欢迎随时与我联系,我会及时解答
2024-11-04 15:30:47 238.24MB stm32
1
AT91SAM9260是一款基于ARM926EJ-S内核的微处理器,由Atmel公司设计,广泛应用于嵌入式系统设计。它提供了高性能、低功耗的特性,适合于各种工业和消费电子产品的应用,如网络设备、多媒体播放器、智能家居控制系统等。本资料包含的是AT91SAM9260的设计原理图和PCB布局图,对于理解和开发基于此芯片的系统至关重要。 **一、AT91SAM9260核心特性** 1. **ARM926EJ-S内核**: 32位RISC架构,最高运行频率可达400MHz,提供高效计算能力。 2. **内存接口**: 内建SDRAM控制器和DDR2控制器,支持外部存储器扩展,满足复杂应用的需求。 3. **外围接口**: 包含丰富的外设接口,如USB Host/Device、以太网MAC、UART、SPI、I²C、PWM、ADC、DAC等。 4. **中断控制器**: 可处理多种中断源,提高系统响应速度。 5. **电源管理**: 提供低功耗模式,适应不同应用场景。 **二、原理图设计** 原理图是电路设计的基础,AT91SAM9260的原理图会详细展示各个功能模块的连接方式、电源分配、信号路由等。它包括以下几个关键部分: 1. **电源系统**: 设计合理的电源布局,确保电压稳定,降低噪声。 2. **时钟系统**: 涉及晶振、PLL(锁相环)配置,确保处理器和其他外设的时序正确。 3. **外设接口**: 显示出与AT91SAM9260连接的所有外设,如存储器、通信接口、传感器等。 4. **调试接口**: 如JTAG或SWD,用于芯片的编程和调试。 5. **复位和保护电路**: 保证系统在异常情况下能安全重启。 **三、PCB布局** 1. **板级规划**: 根据系统需求,合理布局各种组件,考虑散热、电磁兼容性和信号完整性。 2. **电源层和地层**: 分布电源平面和接地平面,降低噪声,提高信号质量。 3. **信号布线**: 考虑信号线的长度、走向和线宽,避免串扰和反射。 4. **过孔设计**: 合理使用过孔,减少阻抗不连续性。 5. **焊盘和元件放置**: 遵循先大后小、先重后轻的原则,优化组装工艺。 **四、设计注意事项** 1. **信号完整性和电源完整性**: 保证高速信号的传输质量和电源的稳定性。 2. **EMI/EMC**: 避免电磁干扰和辐射,符合相关标准。 3. **热设计**: 分析和预测芯片及关键部件的温升,采取散热措施。 4. **可测试性设计**: 便于生产过程中的检测和故障定位。 5. **可制造性设计**: 考虑PCB制造工艺限制,简化设计,降低成本。 通过分析AT91SAM9260的原理图和PCB图,开发者可以深入理解其内部工作原理,从而优化硬件设计,提高系统的可靠性和性能。在实际项目中,这一步骤对于确保产品的质量和功能实现至关重要。
2024-11-03 23:16:59 49KB AT91SAM9260 ARM9
1
AT91SAM9260硬件原理图AT91SAM9260硬件原理图AT91SAM9260硬件原理图AT91SAM9260硬件原理图
2024-11-03 22:43:48 152KB AT91SAM9260
1
在电子设计领域,尤其是嵌入式系统开发中,通信接口的转换扮演着至关重要的角色。本文将详细讨论标题和描述中提及的几个关键组件:CP2105、CP2103、ADM2582,以及USB转UART、UART转隔离RS422的相关知识点,并提供Cadence原理图封装库和数据手册的相关信息。 让我们来看看CP2105和CP2103,这两款芯片是Silicon Labs(原名Cygnal)生产的一种高性能USB到UART桥接器。它们主要用于实现PC或其他USB设备与串行接口的通信。CP2105支持双UART通道,能够同时连接两个独立的UART设备,而CP2103则是一个单通道的版本。这些芯片内置了USB协议处理功能,可以简化USB到串行的转换,同时提供全速USB 1.1接口,数据传输速率可达12Mbps。 接下来是ADM2582,这是一款由Analog Devices生产的隔离式RS-422/RS-485收发器。RS-422和RS-485是工业标准的多点通信协议,适用于长距离、高噪声环境的数据传输。ADM2582提供了电气隔离,以保护系统免受可能的电压浪涌和地环路干扰,确保数据传输的可靠性和系统的稳定性。它支持最高20Mbps的数据速率,可以驱动多达32个接收器,是UART到隔离RS-422转换的理想选择。 在嵌入式硬件设计中,USB转UART模块常用于通过USB接口在线烧写STM32这样的微控制器。STM32是基于ARM Cortex-M内核的微控制器系列,广泛应用于各种嵌入式系统。通过USB转串口工具,开发者可以方便地使用如STLink、JLink等调试器进行程序下载和调试,而无需额外的物理接口。 数据手册和原理图封装库是设计过程中不可或缺的资源。数据手册详细描述了每个芯片的功能、引脚定义、电气特性、操作条件和应用电路等,为设计者提供了必要的设计指导。Cadence是业界广泛使用的电子设计自动化软件,其原理图封装库包含了各种元器件的图形表示,使得在原理图设计阶段可以直观地布局和连接电路。 总结来说,USB转UART芯片如CP2105和CP2103,以及隔离RS-422收发器ADM2582,在嵌入式硬件设计中起到桥梁作用,使PC能与串行设备如STM32进行有效通信。理解这些组件的工作原理和正确使用方法,对嵌入式系统的开发和调试至关重要。数据手册和Cadence封装库则是确保设计准确无误的关键参考资料。在实际项目中,结合这些知识,可以构建出稳定可靠的USB转串口和隔离RS-422通信解决方案。
2024-10-30 11:41:34 4.29MB stm32 arm 嵌入式硬件
1