"开关Buck-Boost双向DCDC转换器Matlab Simulink 2016b仿真模型研究与应用","开关Buck-Boost双向DCDC转换器Matlab Simulink 2016b仿真模型研究与应用",开关 buck-boost 双向DCDC matlab simulink仿真 (1)该模型采用 matlab simulink 2016b 版本搭建,使用matlab 2016b及以上版本打开最佳。 (2)该模型已经代为转到各个常用版本。 【算法介绍】 (1)采用三模式调制方式; (2)外环电压环采用PI控制,内环电流环采用PI控制; (3)利用电池作为充放电对象(负载),亦可自行改成纯电阻; (4)一共6个仿真文件: 固定输入24V,分别输出12V,24V,36V;(三个) 分别输入12V,24V,36V,固定输出24V。 ,开关; buck-boost; 双向DCDC; matlab simulink 2016b; 三模式调制; PI控制; 电池充放电; 仿真文件,基于Matlab Simulink的开关Buck-Boost双向DCDC转换器仿真模型
2025-11-14 13:13:44 401KB
1
旋翼无人机的轨迹跟踪控制原理及其在MATLAB和Simulink环境下的仿真研究。首先阐述了旋翼无人机的基本构造和飞行控制机制,重点在于通过改变电机转速来调节无人机的姿态和位置。接着分别对PID控制和自适应滑模控制进行了深入探讨,提供了具体的PID控制算法实例,并展示了如何利用Simulink搭建相应的控制系统模型,实现了对无人机位置和姿态的精确控制。最后比较了这两种控制方式的效果,指出了各自的特点和优势。 适合人群:从事无人机技术研发的专业人士,尤其是对飞行器控制理论感兴趣的研究人员和技术爱好者。 使用场景及目标:适用于希望深入了解无人机控制原理的学习者,旨在帮助他们掌握PID控制和自适应滑模控制的具体实现方法,以便应用于实际项目中。 其他说明:文中不仅包含了详细的理论讲解,还附带了大量的图表和代码示例,便于读者理解和操作。此外,通过对两种控制方法的对比分析,有助于选择最适合特定应用场景的控制策略。
2025-11-11 14:01:00 401KB 无人机 PID控制 MATLAB Simulink
1
仿生足机器人的研究可以追溯到20世纪60年代初,当时科学家们开始研究多条腿式机器人。足机器人的研究源于对动态运动性能的探索,而这一领域的重要人物包括Marc Raibert和他的团队。在20世纪60年代,Shigley提出了利用联动机构作为腿式机器人的运动机构。到了1966年,McGhee和Frank研制出了能够自主行走的足机器人"Phoney Pony",它标志着计算机控制下的腿式机器人的诞生。此后,OSU hexapod和Adaptive Suspension Vehicle(ASV)的出现进一步推动了步行机器人技术的发展。 在20世纪80年代,Marc Raibert和其同事在MIT系统地研究了步行机器人,并成功制造出独腿跳跃机器人,奠定了足机器人动态步态运动控制的基础。此阶段的显著进展使得双足和足机器人能够实现跑和跳的动作,代表了足机器人领域的一个重要里程碑。 足机器人因其良好的机动性和运动稳定性成为该领域研究的焦点。足机器人通常采用偶数条腿的设计,以实现高效率的步态和稳定的性能。在众多类型的地面机器人中,足机器人能够适应多种地形,并且与轮式或履带式机器人相比具有更高的灵活性和稳定性。因此,足机器人在复杂和危险环境下的应用潜力巨大,受到了研究人员的高度重视。 足机器人的驱动模式和技术也得到了快速的发展。液压驱动模式因其大带宽和高输出功率的特性,被广泛采用以提高机器人的动力性能和负载能力。除了驱动技术之外,足机器人的控制系统也面临诸多挑战,包括动作控制、步态生成以及状态转换等。这些问题的研究与解决对于未来足机器人的发展至关重要。 随着技术的不断进步,中国山东大学正在开发的液压足机器人代表了当前该领域的一个重要研究方向。研究人员期望通过这项研究,克服现有技术难点,提高机器人的性能,实现更广泛的应用。 仿生足机器人的研究回顾与展望呈现出了一条从早期研究到现代技术发展趋势的清晰脉络。随着对机器人技术的深入探索和创新,足机器人在代替人类进行复杂和危险环境作业方面的潜力正在逐步实现。未来,随着更多技术难点的解决和驱动控制技术的进步,足机器人有望在多个领域发挥更大的作用。
2025-11-09 16:06:26 549KB
1
在IT行业中,尤其是在材料科学与工程、结构力学或者航空航天等领域,计算裂纹扩展方向是一个重要的研究课题。这关乎到材料的耐久性、安全性以及结构的寿命预测。本篇文章将详细探讨种常用的方法来计算裂纹扩展方向,这些方法基于不同的理论基础和计算算法。 1. **线弹性断裂力学(Linear Elastic Fracture Mechanics, LEFM)**:这是最早用于分析裂纹扩展的基础理论。LEFM假设材料在裂纹附近是线弹性的,即应力应变关系遵循胡克定律。通过计算K或J积分,可以预测裂纹尖端的应力场强度,从而确定裂纹扩展的方向。K积分与能量释放率有关,而J积分则更适用于考虑几何非线性和材料非线性的情况。 2. **基于能量的方法(Energy-Based Methods)**:这类方法如基于裂纹表面能最小化的原则,考虑材料内部的能量变化。裂纹扩展的方向通常是使整个系统能量下降最大的方向。这包括了格里菲斯能量准则和基于塑性功的理论,它们试图通过比较不同扩展方向下的能量释放来确定最可能的扩展路径。 3. **有限元方法(Finite Element Method, FEM)**:FEM是一种通用的数值分析工具,能够处理复杂的几何形状和非线性问题。在裂纹扩展问题中,通过建立包含裂纹的有限元模型,然后迭代求解,可以得到裂纹扩展的动态过程和方向。这种方法需要较大的计算资源,但能提供精确的解决方案。 4. **基于机器学习的预测模型**:近年来,随着大数据和人工智能的发展,利用机器学习算法预测裂纹扩展方向也成为一种新趋势。通过对大量实验数据进行训练,神经网络、支持向量机等模型可以学习并预测裂纹的行为。这种方法的优势在于能够处理非线性关系和高维问题,但需要大量的训练数据,并且解释性相对较弱。 Python作为一种强大的编程语言,常被用于实现这些计算裂纹扩展方向的算法。例如,使用`scipy`库进行数值计算,`matplotlib`或`seaborn`绘制裂纹扩展的图形,甚至结合`tensorflow`或`pytorch`构建机器学习模型。在实际应用中,开发者通常会结合这些工具编写脚本(如`pythonwork`中的文件),对裂纹扩展进行模拟和预测。 以上所述,计算裂纹扩展方向的方法多样,从经典的线弹性断裂力学到现代的机器学习技术,各有优缺点,需要根据具体问题选择合适的方法。对于IT专业人士来说,掌握这些算法并能运用Python进行实现,对于解决工程问题和推动科研发展具有重要意义。
2025-11-09 15:29:03 30KB
1
内容概要:本文详细介绍了使用STM32F103C8T6作为控制器,结合AD7793 24位Σ-Δ ADC实现PT100温度测量的硬件设计和软件实现。主要内容涵盖三线制和线制测量方案对比、硬件电路设计要点(如激励电流配置、引线电阻补偿)、按键处理机制(状态机+FIFO队列)、查表法优化温度转换速度以及4-20mA变送输出电路的设计。文中还提供了详细的代码片段,展示了如何通过寄存器配置实现不同的测量模式,并讨论了实际应用中的注意事项和技术难点。 适合人群:嵌入式系统开发工程师、工业自动化领域的技术人员、对高精度温度测量感兴趣的电子爱好者。 使用场景及目标:适用于需要精确温度测量的应用场合,如工业控制系统、实验室环境监测等。目标是帮助读者掌握PT100温度传感器的工作原理及其在不同布线方式下的性能表现,提高系统的可靠性和准确性。 其他说明:文中提到的技术细节对于理解和改进现有温度测量系统非常有价值,特别是关于硬件选型、软件算法优化等方面的内容。此外,提供的源码和电路图可以帮助读者快速搭建实验平台进行验证。
2025-11-06 18:44:01 61.24MB
1
在现代社会,随着科技的迅猛发展和人们生活品质的不断提升,自动控制系统逐渐渗透进日常生活中的各个方面,其中以可编程逻辑控制器(PLC)为核心的层电梯控制系统就是自动控制领域在数字化时代背景下的一个重要产物。三菱PLC控制的层电梯系统不仅体现了技术的进步,也预示着数字技术对人类生活方式和科技进步的深刻影响。 电梯作为人们日常生活中不可或缺的一部分,其性能的优劣直接影响到人们的出行效率和安全体验。从19世纪初期的蒸汽动力升降机到1852年世界上第一台安全升降机的诞生,电梯控制系统经历了从简单到复杂,从机械控制到电子控制,再到数字化控制的发展过程。随着电梯性能对人类生活影响的日益增大,电梯控制系统的先进性和可靠性变得越来越重要。 PLC控制电梯系统相较于传统继电器控制的电梯系统具有明显的优势。传统电梯系统采用的继电器逻辑控制线路,其缺点显而易见:故障率高、维护困难、运行寿命较短以及占用空间较大。随着技术的更新换代,采用可编程控制器(PLC)和微机组成的电梯控制系统应运而生,极大改善了这些问题。PLC控制的电梯系统不仅可以提高控制水平,改善电梯性能,还能显著提升电梯运行的可靠性,并且在维护上更加便捷高效。 PLC控制电梯系统具备多个优点。PLC控制系统能提供更高可靠性的电梯运行,其稳定性和故障检测能力均高于传统控制方式。维修方面,PLC控制系统的设计更为人性化和智能化,使得维护工作更简便快捷。再者,PLC控制系统支持电梯的自动控制,能实时监控电梯运行状态,大大减少了由于人为操作不当导致的故障。PLC控制电梯还能实现远程监控和控制,这意味着通过网络即可实时掌握电梯运行情况,有效预防和减少意外事故的发生。 PLC控制的层电梯控制系统不仅在自动控制领域具有划时代的意义,也代表了数字化技术对日常生活和科技进步的深远影响。随着科技的不断进步和人们生活需求的提高,PLC控制的电梯系统未来的发展前景将更加广阔。这种系统的发展不仅将极大地提升电梯的控制水平和性能,更将带来更加安全、便捷、高效的人性化乘梯体验,从而进一步提高人们的生活品质,并推动相关技术领域的快速进步。
2025-11-04 11:17:51 143KB
1
三菱 PLC 控制的层电梯系统设计 本科毕业设计中的三菱 PLC 控制的层电梯系统设计旨在实现电梯的自动控制,提高电梯的运行效率和可靠性。该设计基于 PLC 控制系统,具有可靠性高、抗干扰能力强、设计和安装容易、维护工作量少等特点。 电梯控制系统主要由电力拖动部分和电气控制部分组成。电力拖动部分由拽引电机、抱闸和相应的开关电路以及开门机组成,而电气控制部分又称控制电路,是电梯控制系统的核心。它包含两部分:拖动控制电路和信号控制电路。 电梯 PLC 控制系统的基本结构系统控制核心为 PLC 主机,通过 PLC 输入接口送入 PLC,由存储器的 PLC 软件运算处理,然后经输出接口分别向指层器及召唤指示灯等发出显示信号,向主拖动系统发出控制信号。 在电梯的控制要求中,电梯由安装在各层厅门口的上升和下降呼叫按钮进行呼叫操纵,其操纵内容为电梯运行方向。电梯轿箱内设有楼层内选按钮,用户可以通过楼层内选按钮选择电梯的运行方向。 本设计旨在实现电梯的自动控制,提高电梯的运行效率和可靠性,并且具有可靠性高、抗干扰能力强、设计和安装容易、维护工作量少等特点。 知识点: 1. 电梯控制系统的组成:电梯控制系统主要由电力拖动部分和电气控制部分组成。 2. PLC 控制系统的特点:具有可靠性高、抗干扰能力强、设计和安装容易、维护工作量少等特点。 3. 电梯 PLC 控制系统的基本结构:系统控制核心为 PLC 主机,通过 PLC 输入接口送入 PLC,由存储器的 PLC 软件运算处理,然后经输出接口分别向指层器及召唤指示灯等发出显示信号,向主拖动系统发出控制信号。 4. 电梯的控制要求:电梯由安装在各层厅门口的上升和下降呼叫按钮进行呼叫操纵,其操纵内容为电梯运行方向。 5. 电梯模型 PLC 控制系统设计:旨在实现电梯的自动控制,提高电梯的运行效率和可靠性,并且具有可靠性高、抗干扰能力强、设计和安装容易、维护工作量少等特点。 因此,本设计对电梯控制系统的设计和实现具有重要的理论和实践价值,对电梯行业的发展和自动化控制领域的应用具有重要的意义。
2025-11-04 11:02:30 580KB
1
CMU_15-445_数据库系统课程项目_基于BusTub_RDBMS_实现个核心模块_包括时钟替换算法与缓冲池管理_哈希索引构建与优化_查询执行引擎开发_以及日志记录与恢复机制.zip嵌入式图形库与LCD屏驱动开发
2025-11-02 02:46:57 309KB python
1
基于PID的旋翼无人机轨迹跟踪控制仿真:MATLAB Simulink实现,包含多种轨迹案例注释详解,基于PID的旋翼无人机轨迹跟踪控制-仿真程序 [火] 基于MATLAB中Simulink的S-Function模块编写,注释详细,参考资料齐全。 2D已有案例: [1] 8字形轨迹跟踪 [2] 圆形轨迹跟踪 3D已有案例: [1] 定点调节 [2] 圆形轨迹跟踪 [3] 螺旋轨迹跟踪 ,核心关键词:PID控制; 旋翼无人机; 轨迹跟踪; Simulink; S-Function模块; MATLAB; 2D案例; 3D案例; 8字形轨迹; 圆形轨迹跟踪; 定点调节; 螺旋轨迹跟踪。,基于PID算法的旋翼无人机Simulink仿真程序:轨迹跟踪控制与案例分析
2025-10-30 17:16:59 95KB paas
1
内容概要:本文深入探讨了旋翼无人机的PID控制系统,涵盖仿真实验、动力学建模、级联PID控制器设计及内外环控制策略。首先介绍了旋翼无人机仿真的重要性,包括三维模型、环境模型、传感器模型和控制算法模型的构建,为后续控制算法的验证提供了平台。接着阐述了动力学模型的作用,即通过力方程组和力矩方程组来描述无人机的运动规律,这是控制系统设计的基础。然后详细讲解了级联PID控制器的工作原理,分为内环姿态环和外环位置环两部分,前者用于维持无人机的姿态稳定,后者用于控制无人机的位置和速度。最后提供了详细的配套文档,帮助使用者理解和维护整个系统。 适合人群:从事无人机技术研发的研究人员、工程师和技术爱好者。 使用场景及目标:适用于希望深入了解旋翼无人机PID控制机制的人群,旨在提升无人机的稳定性和响应速度,优化其在复杂环境下的表现。 其他说明:本文不仅提供了理论知识,还附带了实用的仿真文件和详细的文档资料,便于读者进行实践操作和进一步探索。
2025-10-30 17:16:29 538KB
1