【基于MPC单步垂直泊车的自动泊车系统:Carsim与Matlab联合仿真及持续优化版本】,MPC单步垂直泊车技术:Carsim与Matlab联合仿真下的自动泊车模型预测控制优化与实践,【5.MPC单步垂直泊车】APA 单步垂直泊车 模型预测MPC 自动泊车Carsim与Matlab联合仿真 后期会继续迭代更新的版本 包含垂直路径数据点(只有路径点)和MPC控制算法 后可以有参考模型,全部开源,入群后,可在群里提问,会。 后期不断优化。 1.Carsim2019 2020场景及车辆配置文件 2.Simulink文件包含stateflow纵向逻辑控制 3.MPC横向控制算法文件 4.垂直路径点处理.m 5.群里 6.跟踪误差等数据分析画图脚本 ,核心关键词: MPC单步垂直泊车; APA; 模型预测MPC; 自动泊车; Carsim与Matlab联合仿真; 垂直路径数据点; MPC控制算法; 后期优化; Carsim2019/2020场景; 车辆配置文件; Simulink文件; stateflow纵向逻辑控制; MPC横向控制算法文件; 垂直路径点处理; 群里; 跟踪误差数据分析画
2025-04-07 14:28:02 436KB 数据仓库
1
空调加热器MPC模型预测控制程序带文献 空调取暖器、室内温度调节模型预测控制、 MPC控制的MATLAB纯M文件,代码约370行,包可运行(需安装MATLAB自带的fmincon相关的优化工具箱)。 基于模型预测控制的温度调节。 包含空调加热模型建模、各类约束建模、室温状态空间建模和MPC 融合修正Kalman滤波对加热器温度和加热器出风口温度进行估测。 配套较简洁的英文参考文献。 文献截图及代码运行结果见附图。 实价可直,后留邮箱收。 关联词: 建筑热模型,热舒适性,建筑节能,建筑热管理,阻容传热模型,灰盒热模型。 ,MPC模型在空调取暖器控制中的应用,基于MPC模型预测控制的空调取暖器室内温度调节系统研究:融合Kalman滤波的约束优化与建筑节能应用,空调取暖器; 室内温度调节; MPC模型预测控制; MATLAB纯M文件; 模型预测控制的温度调节; 空调加热模型建模; 约束建模; 室温状态空间建模; Kalman滤波; 英文参考文献。,基于MPC的空调加热器温度预测控制程序及文献
2025-04-06 08:19:54 4.06MB
1
基于Lyapunov模型预测控制方法的AUV路径跟踪与fossen动力学模型复现分析:与优化算法和反步法对比研究,基于Lyapunov模型的MPC方法在AUV路径跟踪问题中的应用与对比研究,5-顶刊复现,基于Lyapunov的模型预测控制MPC方法,用于控制水下机器人AUV的路径跟踪问题trajectory tracking 具体的方法和建模过程可以参考文献。 本代码包括水下机器人的fossen动力学模型,matlab的优化算法求解器,还包括非线性反步法backstepping 的对比代码非常划算,两种对比都有。 ,顶刊复现; Lyapunov模型预测控制MPC; 水下机器人AUV路径跟踪; fossen动力学模型; matlab优化算法求解器; 非线性反步法backstepping对比,基于Lyapunov MPC方法的AUV路径跟踪研究
2025-03-30 00:33:50 3.65MB xhtml
1
基于模型预测控制的储能双向DCDC变换器仿真研究:模型构建、功能实现与结果分析,基于模型预测控制的储能双向DCDC变换器仿真研究:仿真模型、实现与结果展示,模型预测控制MPC的储能双向DCDC变器 仿真展示为储能双向DCDC变器,采用模型预测电流控制。 仿真模型包括:蓄电池模型、双向DCDC变器主电路、下垂控制、模型预测电流控制(fcn代码实现)。 结果如图所示,跟踪期望能力强,功能实现完整。 文件包括: [1]仿真模型 [2]相关参考文献。 ,模型预测控制MPC;储能双向DCDC变换器;仿真展示;蓄电池模型;主电路;下垂控制;fcn代码实现;跟踪期望能力强;功能实现完整;相关参考文献。,模型预测控制MPC在储能双向DCDC变换器中的应用及仿真研究
2025-03-29 13:10:15 2.05MB css3
1
MPC控制器设计,模型预测控制,线性时变模型预测控制,LTV MPC,提供理论讲解与应用实现。 提供MPC算法、LTV MPC 算法在直升机和四旋翼中的应用实例。 提供模型预测控制资料。 提供matlab中模型预测控制工具箱mpcDesign 的使用讲解。
2025-03-27 09:37:49 402KB 开发语言
1
1. Matlab实现粒子群优化算法优化支持向量机的数据回归预测(完整源码和数据) 2. 多变量输入,单变量输出,数据回归预测 3. 评价指标包括:R2、MAE、MSE、RMSE 4. 包括拟合效果图和散点图 5. Excel数据,暂无版本限制,推荐2018B及以上版本 注:采用 Libsvm 工具箱(无需安装,可直接运行),仅支持 Windows 64位系统
1
四旋翼飞行器模型预测控制仿真带PPT 四旋翼无人机 四旋翼飞行器模型预测控的MATLAB仿真,纯M代码实现,最优化求解使用了CasADi优化控制库(绿色免安装)。 CasADi我已下到代码目录里,代码到手可直接运行。 运行完直接plot出附图仿真结果。 配套30页的ppt,简介了相关原理与模型公式,详见附图。 关联词:无人机轨迹跟踪,无人机姿态控制, MPC控制。
2025-01-21 22:43:23 1.51MB 哈希算法
1
在现代自动化控制领域,PID(比例-积分-微分)控制器因其简单易用和稳定性而广泛应用。然而,传统的PID控制器存在参数整定困难、适应性不足等问题,这限制了其在复杂系统中的性能。为了解决这些问题,研究人员将神经网络与PID控制器相结合,并引入了优化算法,如粒子群优化(PSO,Particle Swarm Optimization),形成了神经网络PID控制策略。 粒子群优化是一种仿生优化算法,源自对鸟群和鱼群集体行为的研究。它通过模拟群体中的个体在搜索空间中移动和优化,寻找最优解。在神经网络PID控制中,PSO用于调整神经网络的权重和阈值,从而实现PID参数的自适应优化。 神经网络,特别是前馈型的多层感知器(MLP,Multi-Layer Perceptron),被用来作为非线性映射工具,它可以学习并逼近复杂的系统动态。在神经网络PID控制中,神经网络负责预测系统的未来输出,以此来改善PID控制器的决策。相比于固定参数的PID,神经网络可以根据系统的实时状态动态调整其参数,提高控制性能。 具体来说,神经网络PID控制系统的工作流程如下: 1. 初始化:设定粒子群的位置和速度,以及神经网络的初始参数。 2. 输入处理:输入信号经过神经网络进行预处理,形成神经网络的输入向量。 3. 粒子群优化:利用PSO算法更新神经网络的权重和阈值,即PID参数。每个粒子代表一组PID参数,其适应度函数通常是系统的性能指标,如稳态误差、超调量等。 4. 输出计算:根据优化后的神经网络参数,计算PID控制器的输出信号。 5. 系统响应:将PID控制器的输出应用于系统,观察系统响应。 6. 反馈循环:根据系统响应调整粒子的位置,然后返回步骤2,直至满足停止条件。 这种结合了PSO和神经网络的PID控制策略有以下优点: - 自适应性强:能够自动适应系统的变化,提高控制性能。 - 鲁棒性好:对系统模型的不确定性及外部扰动具有较好的抑制能力。 - 调参简便:通过PSO优化,无需人工反复调试PID参数。 - 实时性能:能够在短时间内完成参数优化,满足实时控制需求。 SPO_BPNN_PID-master这个文件名可能代表了一个关于“基于粒子群优化的神经网络PID控制”的开源项目或代码库。在这个项目中,开发者可能提供了实现这种控制策略的代码,包括神经网络的构建、PSO算法的实现以及PID参数的优化过程。使用者可以通过研究和修改这些代码,应用到自己的控制系统中,或者进一步研究优化方法以提升控制效果。 基于粒子群优化的神经网络PID控制是自动化控制领域的创新应用,它将先进的优化算法与智能控制理论相结合,为解决传统PID控制器的局限性提供了一种有效途径。通过这样的方法,我们可以设计出更加智能化、自适应的控制系统,以应对日益复杂的工程挑战。
2025-01-21 22:42:14 6KB 神经网络
1
两电平三相并网逆变器模型预测控制MPC 包括单矢量、双矢量、三矢量+功率器件损耗模型 Matlab simulink仿真(2018a及以上版本)
2024-11-28 23:30:05 62KB matlab
1
线性参变(LPV)+鲁棒模型预测控制(RMPC)+路径跟踪(PTC),目前能实现20-25m s的变速单移线和10-15m s的变速双移线。 考虑速度和侧偏刚度变化,基于二自由度模型和LMI设计鲁棒模型预测控制器。 上层考虑状态约束,输入约束进行控制率在线求解,计算得到前轮转角和附加横摆力矩,下层通过最优化算法求出四轮转矩。 算法采用simulink的sfunction进行搭建,和carsim8.02进行联合仿真,包含出图m文件和简单的说明文档。 本套文件内含一个主要的mdl文件,一个出图m文件,一个说明文档以及carsim8.02的cpar文件。 MATLAB2020a以上版本和carsim8.02版本
2024-10-23 21:46:50 403KB
1