1、python程序 2、有数据集 3、迭代数据快
2022-05-06 14:12:05 5KB 支持向量机 算法 python 机器学习
该代码把支持向量机中常用的核函数单独拿了出来,对于需要用核函数处理数据的同学大有帮助。
2022-05-05 20:34:36 1KB 支持向量机 SVM 核函数
1
使用scikit-learn在python中进行SVM MNIST数字分类 该项目提出了的众所周知的问题。 出于本教程的目的,我将使用具有原始像素特征的算法。 该解决方案使用易于使用的机器学习库以python编写。 该项目的目标不是达到最先进的性能,而是教您如何使用sklearn的SVM在图像数据上训练SVM分类器。 尽管该解决方案并未针对高精度进行优化,但结果还是不错的(请参见下表)。 如果您想获得最佳性能,这两个资源将向您展示当前的最新解决方案: 下表显示了与其他模型相比的一些结果: 方法 准确性 评论 随机森林 0.937 简单的一层神经网络 0.926 简单的2层卷积网络 0.981 支持向量机 0.9852 C = 5,伽玛= 0.05 线性SVM + Nystroem内核逼近 线性SVM +傅立叶核逼近 项目设置 本教程是在Ubuntu 18.10上编写和测试的。 项目包含具有所有必要库的Pipfile Python-版本> = 3.6 pipenv-软件包和虚拟环境管理 麻木 matplotlib scikit学习 安装Python。 git克隆仓
1
1.python代码 2.有数据集,可直接运行
2022-04-28 21:06:01 4KB python 算法 支持向量机 机器学习
【达摩老生出品,必属精品,亲测校正,质量保证】 资源名:SVM参数优化_提升分类器的性能_GA_PSO_matlab 资源类型:matlab项目全套源码 源码说明: 全部项目源码都是经过测试校正后百分百成功运行的,如果您下载后不能运行可联系我进行指导或者更换。 适合人群:新手及有一定经验的开发人员
2022-04-13 09:12:07 15KB matlab 支持向量机 SVM GA_PSO
除了在Matlab中使用PRTools工具箱中的svm算法,Python中一样可以使用支持向量机做分类。因为Python中的sklearn库也集成了SVM算法,本文的运行环境是Pycharm。 一、导入sklearn算法包 Scikit-Learn库已经实现了所有基本机器学习的算法,具体使用详见官方文档说明:http://scikit-learn.org/stable/auto_examples/index.html。 skleran中集成了许多算法,其导入包的方式如下所示, 逻辑回归:from sklearn.linear_model import LogisticRegression 朴素
2022-04-10 20:33:59 175KB matlab函数 python python算法
1
C语言版的支持向量机源码,很好,很强大。
2022-04-07 11:14:12 4KB C,SVM
1
内包含基于SVM的粒子群算法来处理乳腺癌的分类预测,其中首先用到了特征提取方法进行特征提取,然后再进行了分类预测。 本程序调用libsvm,使用该代码时,首先需要配置libsvm函数包。
2022-04-06 03:10:12 41KB 支持向量机 算法 分类 机器学习
5.1 支持向量机(SVM)算法(上)
2022-04-06 03:09:58 12KB 支持向量机 算法 机器学习 人工智能
svm-gpu 适用于带GPU的多类支持向量机(SVM)库。 这是一种快速且可靠的分类算法,在有限的数据量下性能很好。 支持向量机 : 支持向量机是有监督的学习模型,可以分析数据并识别模式。 一个特殊的特性是,它们同时最小化了经验分类误差并最大化了几何余量。 因此,它们也被称为最大余量分类器。 支持向量机的优点是: 在高维空间有效。 在维数大于样本数的情况下仍然有效。 在决策函数中使用训练点的子集(称为支持向量),因此它也可以提高存储效率。 多功能:可以为决策功能指定不同的内核功能。 提供了通用内核,但是也可以指定自定义内核。 与神经网络相比,在有限数量的样本(数千个样本)中实现了更高的速度和更好的性能 支持向量机的缺点包括: 如果特征数量远大于样本数量,则在选择内核函数时应避免过度拟合,并且正则化项至关重要。 SVM不直接提供概率估计,而是使用昂贵的五重交叉验证来计
2022-03-29 11:08:04 113KB JupyterNotebook
1