在本文中,我们将深入探讨如何使用QT C++和FFmpeg库来调用USB摄像头,实现实时显示视频流,并进行H264编码的视频录制。FFmpeg是一个强大的开源多媒体处理框架,支持多种编码、解码、转换和流化功能。QT C++则是一个流行的跨平台应用程序开发框架,提供了丰富的图形用户界面(GUI)工具和系统访问接口。 确保你的开发环境中已经安装了QT和FFmpeg库。对于FFmpeg,你需要下载源代码并按照官方文档编译安装,确保配置时包含了所需的编解码器和库,例如libavformat、libavcodec、libavutil和libavdevice,这些是与设备输入输出和编码解码相关的组件。 在QT项目中,你需要引入FFmpeg的头文件和链接库。这可以通过在.pro文件中添加以下行实现: ```cpp INCLUDEPATH += /path/to/ffmpeg/include LIBS += -L/path/to/ffmpeg/lib -lavformat -lavcodec -lavutil -lavdevice ``` 接下来,创建一个QT窗口,用于显示来自摄像头的视频流。可以使用QVideoWidget或QOpenGLWidget作为显示视图。创建一个QThread子类来处理视频捕获和编码任务,以避免阻塞主线程。在该线程中,你可以使用FFmpeg的`avdevice_open_input()`函数打开USB摄像头,然后使用`avformat_find_stream_info()`获取流信息。 ```cpp AVFormatContext *fmtCtx = nullptr; if (avformat_open_input(&fmtCtx, "video://0", nullptr, nullptr) != 0) { // 错误处理 } if (avformat_find_stream_info(fmtCtx, nullptr) < 0) { // 错误处理 } ``` 找到摄像头的视频流后,你需要创建一个AVCodecContext来配置编码参数。H264编码可以通过查找名为"libx264"的编码器来实现。之后,使用`avcodec_open2()`打开编码器。 ```cpp AVCodec *codec = avcodec_find_encoder(AV_CODEC_ID_H264); AVCodecContext *encCtx = avcodec_alloc_context3(codec); // 配置编码参数... if (avcodec_open2(encCtx, codec, nullptr) < 0) { // 错误处理 } ``` 为了实时显示视频流,创建一个QImage从AVFrame中解析像素数据,然后更新QVideoWidget或QOpenGLWidget。同时,你还需要创建一个输出文件,使用`avio_open()`打开,`avformat_write_header()`写入文件头,然后在每一帧编码后使用`av_interleaved_write_frame()`将编码后的数据写入文件。 ```cpp AVOutputFormat *outFmt = av_guess_format("mp4", "output.mp4", nullptr); AVFormatContext *outFmtCtx = nullptr; avformat_alloc_output_context2(&outFmtCtx, outFmt, nullptr, "output.mp4"); if (avio_open(&outFmtCtx->pb, "output.mp4", AVIO_FLAG_WRITE) < 0) { // 错误处理 } avformat_write_header(outFmtCtx, nullptr); while (捕获视频帧) { // 编码和显示帧... AVPacket pkt; av_init_packet(&pkt); pkt.data = nullptr; pkt.size = 0; avcodec_encode_video2(encCtx, &pkt, frame, &gotPacket); if (gotPacket) { pkt.stream_index = videoStreamIndex; av_interleaved_write_frame(outFmtCtx, &pkt); } } av_write_trailer(outFmtCtx); ``` 别忘了在完成后释放所有资源,关闭输入和输出文件上下文,以及关闭编码器和解码器上下文。 通过以上步骤,你就能在QT C++环境中利用FFmpeg调用USB摄像头,显示视频流,并以H264编码保存为MP4格式的视频文件。这个过程涉及了多媒体处理、多线程编程、文件I/O和编码解码等多个方面的知识,对于深入理解QT和FFmpeg的使用非常有帮助。在实际开发中,可能还需要考虑性能优化、错误处理和用户交互等方面的问题,以提供更好的用户体验。
2025-05-04 17:06:09 111.06MB ffmpeg
1
WebService上传、下载显示图片,有需要的下载! 解压密码:www.cnblogs.com/xvqm00
2025-05-03 18:11:32 475KB
1
在Visual Studio 6.0中出现了一个新类CHtmlView,利用这个类,我们可以实现在对话框的控制中显示HTML文件。 要想使用CHtmlView类,对它的定义和实现就必须有全面深入的理解。我们不妨拿CHtmlView和CListView做一个比较,通过比较这两个类,我们会发现一些有趣的差别。首先,MFC中CListView有一个对应的CListCtrl类,而CHtmlView却没有一个CHtmlCtrl类与之对应;其次,CListView的使用依赖于MFC的文档/视结构,而CHtmlView的实现是基于COM的。通过IWebBrowser2接口来实现,而且IWebBrowser2与MFC文档/视图结构之间没有任何关系。
2025-05-03 06:17:08 2.63MB CHtmlView
1
mpv_thumbnail_script.lua (您可能也对感兴趣) 它是什么? mpv_thumbnail_script.lua是的脚本/替换OSC,用于将mpv_thumbnail_script.lua悬停在搜索mpv_thumbnail_script.lua上时显示预览缩略图,而无需任何外部依赖项 ,跨平台 ! 该脚本支持所有四个内置OSC布局,。 该脚本还将对视频进行多次遍历,以越来越高的频率生成缩略图,直到达到目标为止。 这样,您便可以在生成每个缩略图之前预览文件的末尾。 如何安装? 从.lua这两个.lua ,并将它们都放置到mpv的scripts目录中。 例如: Linux / Unix / Mac: ~/.config/mpv/scripts/mpv_thumbnail_script_server.lua和~/.config/mpv/scripts/mpv_thumbnail_script_client_osc.lua Windows: %APPDATA%\mpv\scripts\mpv_thumbnail_script_server.lua和%APPDA
2025-04-29 22:34:35 2.46MB lua ffmpeg thumbnails
1
螺旋的 一串WS2812 LED在树莓派上呈螺旋状显示文字,无需剪线! 专为 Raspberry Pi A+ 及更高版本设计,包括 Raspberry Pi 2。 与提供电平转换和高电流驱动器的 Ardhat 配合使用,请参阅了解更多详细信息。 如果你想在裸树莓派上使用它,你可以像这样构建一个电平转换器 并将其连接到 RPi 引脚 18,即 PWM 输出引脚。 使用来自 Jeremy Garff 的 RPi ws281x 库中的 DMA 代码,由 Richard Hirst 修改。 使用来自 代码 安装 git clone 到 RPi 并运行 make 使用 ./spiraled 运行
2025-04-29 18:21:59 2.12MB
1
可调量程智能压力开关:STC单片机驱动,RS485modbus通讯,4-20mA与继电器输出,数码显示,远程监控,安全防护,完整电路设计资料,可调量程智能压力开关:STC单片机驱动,RS485 Modbus通讯,多输出功能,数码显示,远程监控与保护,原理图和源码齐全,可调量程智能压力开关,采用STC15单片机设计,RS485modbus输出,4-20mA输出,继电器输出,带数码管显示,提供原理图,PCB,源程序。 可连接上位机实现远程监控,RS485使用modbus协议,标定方法简单,使用三个按键实现标定和参数设定,掉电数据不会丢。 有反接和过压过流保护。 ,可调量程;智能压力开关;STC15单片机;RS485;modbus输出;4-20mA输出;继电器输出;数码管显示;原理图;PCB;源程序;远程监控;标定方法;参数设定;掉电数据保持;反接保护;过压过流保护。,STC15单片机驱动的智能压力开关:RS485 Modbus通讯,4-20mA输出,多保护功能
2025-04-29 14:16:01 7.41MB xhtml
1
0.96寸OLED显示模块是一种常用的显示设备,广泛应用于各种电子产品的显示屏中,它具备高对比度、低功耗、宽视角等特点。这种显示模块通常使用有机发光二极管技术,即OLED技术,这种技术可以提供清晰的图像显示和良好的视觉效果。 在不同平台下,OLED显示模块需要配套相应的代码来实现显示功能。这些代码可能包括驱动程序、应用程序接口(API)调用等,以确保OLED模块能够在特定的硬件和软件环境中正常工作。代码实现的细节会根据使用的开发平台(如Arduino、树莓派、STM32等)有所不同,但基本原理相似,主要是通过编程控制OLED显示屏的像素点显示特定的颜色和图案。 原理图是电子设备设计和分析的重要工具,它详细展示了OLED显示模块内部各电子元件的连接方式。对于开发者而言,原理图有助于理解显示屏的工作原理,并在遇到问题时快速定位故障点。规格书则是一份详细的产品参数说明书,包含了OLED显示模块的电气特性、尺寸大小、接口定义等重要信息。通过规格书,用户可以了解模块的技术指标和性能,以便更好地选择和使用产品。 数据手册是产品使用和开发过程中的重要参考资料,它不仅包含了规格书的所有信息,还包括了模块的使用注意事项、编程细节、接口时序等深层次的技术信息。这份文档对于深入开发和调试OLED显示模块至关重要。 接线使用说明文档是指导用户如何正确连接OLED显示模块的指南。它详细描述了模块的每个引脚功能,以及如何将它们与外部控制器或电源连接。正确的接线是确保显示模块正常工作和避免损坏的基础。 字符图片取模工具是一种软件工具,用于将要显示的字符或图案转换成OLED显示屏能够识别的点阵数据。在开发中,取模工具可以帮助用户快速生成显示内容,提高开发效率。取模通常涉及将字符或图像按照OLED屏的分辨率进行编码,以便模块能够按正确的顺序点亮相应的像素点。 0.96寸OLED显示模块的资料涵盖了从硬件连接到软件编程的全过程。为了让开发者更好地利用这款显示模块,资料中不仅提供了代码实现,还包括了必要的文档资料,如原理图、规格书、数据手册以及接线和取模工具等。这些资料的提供对于简化开发流程、提高开发效率、确保产品质量具有重要意义。
2025-04-29 11:37:38 18.94MB OLED 智能小车
1
STM8是一种8位微控制器,由意法半导体(STMicroelectronics)生产,广泛应用于各种嵌入式系统。在这个例程中,我们关注的是如何使用STM8控制GMG12864-59D LCD显示器,该显示器使用了ST7567驱动芯片。这个程序是为那些想要在STM8平台上实现图形LCD显示功能的开发者准备的。 ST7567是一款常见的CPLD(复杂可编程逻辑器件)驱动器,用于控制128x64像素的LCD显示屏。它能够处理显示数据的刷新、对比度调整以及其他显示相关的功能。这种驱动芯片在低功耗、小型显示应用中非常流行。 LCD12864显示模块通常包含一个控制器和一块128×64像素的液晶显示屏。在STM8的例程中,开发者需要编写代码来初始化ST7567驱动芯片,设置显示模式,以及向LCD发送命令和数据。这通常涉及到配置I/O引脚,设置时序,以及理解ST7564的数据手册中的指令集。 在"stm812864lcd"这个压缩包中,可能包含了以下内容: 1. **源代码**:C或汇编语言编写的STM8驱动程序,用于控制LCD显示。 - 这些源文件可能包括初始化函数,用于设置LCD控制器的寄存器。 - 显示函数,如清屏、画点、绘制字符和图形等。 - 可能还包括用于处理用户输入和控制LCD背光的函数。 2. **头文件**:定义了LCD相关函数的原型和常量,方便其他源文件调用。 - 这些头文件可能会包含LCD控制引脚的定义,以及ST7567的指令集常量。 3. **示例程序**:可能包含一些简单的示例,演示如何使用这些驱动函数在LCD上显示文本、图形或其他元素。 4. **文档**:可能有关于如何编译和运行程序的说明,以及关于LCD和STM8接口的详细信息。 5. **库文件**:可能包含STM8标准外设库(SPL)或HAL库的相关文件,这些都是STM8开发常用的库,帮助简化硬件访问。 为了将这个例程运行起来,开发者需要有适当的开发环境,如STM8 IDE(如SWIM或JTAG调试器),并将STM8的源代码编译链接成可烧录的二进制文件。然后,通过编程器将这个二进制文件下载到STM8微控制器中,连接LCD模块,即可看到程序效果。 总结来说,这个STM8例程提供了在STM8微控制器上驱动GMG12864-59D LCD显示器的方法,通过ST7567驱动芯片实现了128x64像素的图形和文本显示。开发者可以通过学习和修改这个例程,实现自己所需的LCD显示功能。
2025-04-28 16:52:17 5KB stm8 lcd12864 LCD显示
1
在现代网页和游戏开发中,利用three.js这类强大的3D图形库能够帮助开发者以较低的学习成本创建丰富的三维视觉效果。在three.js的众多功能中,实现水波纹效果一直是一个很受欢迎的应用场景。然而,在实际操作中,开发者可能会遇到一些技术问题,比如在使用three.js的Water2对象时,水波纹效果无法正常显示。这时候,开发者需要确保已经准备好了所有必需的资源图片。 我们需要了解three.js中Water2对象的基本原理。Water2对象是three.js的扩展库three/examples/jsm/objects/Water2.js的实例,它能够模拟水波纹效果,通过计算和渲染每个像素点的位置变化来生成动态的水面效果。为了实现这一效果,Water2对象通常需要依赖一系列预渲染的纹理资源。这些资源图片包含了水面波纹的各种状态,从而在渲染过程中能够被叠加和混合以产生逼真的动态波纹效果。 具体来说,开发者需要准备的资源图片包括但不限于以下几种: 1. 水面反射纹理:这是水面反射场景的纹理图,用于模拟水面上的反射效果。 2. 水面折射纹理:这是水面折射场景的纹理图,用于模拟水下的视觉效果。 3. 波纹贴图:这是控制水面波纹运动的贴图,决定了水波的形状和动态变化。 4. 水平面贴图:用于控制水面颜色和透明度的贴图,可以模拟不同深浅的水域颜色。 若要实现逼真的水波纹效果,还需要注意以下几点: - 确保纹理图片的分辨率足够高,以避免像素化和模糊。 - 正确设置纹理的UV映射,确保纹理图片能够正确覆盖到水面的每个部分。 - 根据实际的使用场景调整波纹贴图的强度和速度,以模拟不同环境下的水面动态效果。 在准备和调试这些资源图片的过程中,开发者可能需要反复调整和测试,以找到最佳的视觉效果和性能平衡点。使用three.js等3D库时,性能优化始终是不可忽视的问题。在大规模场景中,纹理图片的加载和渲染可能会对性能产生较大影响,因此,合理的资源管理和优化策略也是成功实现水波纹效果的关键。 此外,three.js社区提供了大量的插件和扩展库,开发者可以通过这些资源来辅助开发。但对于Water2对象而言,其对资源图片的需求相对固定,因此,主要的工作仍然是对上述提到的几种纹理图片进行精确配置。 对于初学者来说,理解和掌握如何配置和使用这些资源图片可能需要一定的时间和实践,但只要按照three.js文档的指导,结合具体项目的实际需求,一般都能够顺利完成水波纹效果的实现。通过这样的实践过程,开发者不仅能够掌握Water2对象的使用,还能更深入地了解three.js中纹理映射和材质处理的相关知识。 值得一提的是,随着three.js版本的更新,资源图片的具体格式和使用方法可能会有所变化,因此开发者需要查阅对应版本的three.js文档,确保信息的准确性。此外,社区中也有许多现成的水波纹效果示例项目,这些项目不仅可以作为学习的模板,还能提供实际应用中遇到问题时的解决方案。 正确配置和使用three.js Water2对象所需的资源图片,是实现逼真水面效果的关键。开发者需要准备多种纹理图片,并对其进行精确设置和优化,以确保水波纹效果能够正确显示并提供良好的用户体验。通过不断实践和学习,开发者能够更好地掌握three.js以及相关三维图形开发技术。
2025-04-27 19:16:30 841KB three.js
1
在现代电子工程领域,FPGA(现场可编程门阵列)技术的应用越来越广泛。随着其灵活性和高性能的特点,FPGA在电机控制领域的应用尤为突出,尤其是用于控制小型伺服电机,也就是常说的舵机。舵机广泛应用于模型飞机、机器人等精确控制角度的场合。舵机的角度控制是通过控制信号的脉冲宽度来实现的,这个宽度与舵机转角之间存在一定的对应关系。FPGA因其高速处理能力,能实时产生精确的控制脉冲,从而达到精确控制舵机的目的。 在本次项目中,将采用FPGA技术实现对舵机角度的控制,并通过数码管实时显示当前舵机的角度。数码管作为一种常见的数字显示设备,通过不同的发光组合来显示数字信息,能直观地展示舵机当前的角度值。这不仅增强了系统的交互性,还提高了观察角度变化的便捷性。 SG90舵机是一款常用的微型舵机,其尺寸小巧、价格低廉,且控制简便,非常适合用在各种DIY项目和教学实验中。SG90舵机具有较好的性能与可靠性,能够满足一般小型机器人的运动需求。在本次开发中,SG90舵机将作为控制对象,FPGA则负责生成符合SG90舵机要求的PWM(脉冲宽度调制)信号,用以驱动舵机转动到指定角度。 在FPGA开发中,需要编写硬件描述语言(如VHDL或Verilog)来实现信号处理逻辑。设计者需要编写代码来控制PWM信号的产生,使得舵机能够按照预设的角度进行旋转。同时,还需要设计数码管驱动电路,使其能够准确地显示舵机的角度信息。整个系统的设计需要考虑信号的同步、稳定性和实时性等因素。 考虑到FPGA的可编程特性,系统在设计完成后还可以进行功能扩展,如增加多个舵机的控制、实现更复杂的控制算法等。这种灵活性是传统微控制器难以比拟的。开发板作为FPGA开发的重要组成部分,提供了必需的硬件接口和资源。在此项目中,EGO1开发板将作为核心硬件平台,承载着FPGA芯片,并提供必要的外围接口电路。 在实际操作过程中,将首先对FPGA进行编程,编写PWM信号产生逻辑,确保能够生成符合SG90舵机要求的控制信号。接着,设计数码管的显示逻辑,实现角度信息的准确显示。将两者结合,通过调试确保系统稳定运行,达到预期的控制效果。 本次项目不仅展示FPGA在实际应用中的强大功能,还体现出它在提高硬件控制精度和系统交互能力方面的优势。通过这个项目的学习,可以加深对FPGA编程和硬件接口控制的理解,为未来在更复杂的系统设计中应用FPGA打下坚实的基础。
2025-04-27 13:47:27 909KB fpga开发 数码管显示
1