面部表情识别 该项目的主要目的是开发一种面部表情识别系统。 该系统将用于将面部表情分类为基本情绪,即快乐,生气,悲伤,中立和惊奇。 目录 基本信息 可以使用许多不同的方法来克服面部表情识别(FER)的问题,但是最适合自动FER的技术是卷积神经网络(CNN)。 因此,提出了一种新颖的CNN架构,并将多个数据集(例如FER2013,FER +,JAFFE,CK +)和实时照片的组合用于训练和测试。 这有助于提高准确性并开发强大的实时系统。 数据集 通过收集来自不同来源的图像来形成组合的数据集。 该项目中使用的不同数据集是FER-2013和FER +数据集,扩展Cohn-Kanade(CK +)数据库,日本女性面部表情数据库(JAFFE)和实时收集的图像。 这样做是为了提高模型的泛化能力,并注意模型不会偏向特定人群。 所使用的数据集主要在姿势,图像质量,对齐方式,清晰度等方面有所不同。 屏幕截图
2022-01-01 21:27:18 36KB JupyterNotebook
1
面部表情识别 一个用于识别实时网络摄像头图像上面部表情的卷积神经网络。 安装 该实现已通过Python 3.6.3进行了测试。 您可以根据需要使用conda或virtualenv创建全新的虚拟环境。 TensorFlow 正式conda ,因此pip用于软件包管理。 所有依赖项都可以在requirements.txt文件中找到。 激活Python 3环境后,您可以使用以下命令安装要求 pip install -r path/to/requirements.txt 实时预测 如果您的计算机装有网络摄像头,则可以即时计算预测。 脱下眼镜和帽子,开始进行实时预测 python webcam.py 训练 如果您想自己训练Tensorflow CNN,则需要从kaggle和获取。 对于CK +,您可以使用ckplus_to_csv.py脚本自动检测所有面Kong,解析灰度强度并将所有CK图像收集到
2021-12-30 14:38:45 225.29MB JupyterNotebook
1
针对疲劳驾驶的六种表情 ,提出几何规范化结合 Gabor滤波提取表情特征 ,使用支持向量机对疲劳驾驶的面部表情分类识别的系统。首先对视频图像预处理进行几何规范化 ,利用二维 Gabor核函数构造最优滤波器 48个,获取 48个面部表情特征点 ,最后利用支持向量机进行面部表情分类识别。实验结果表明径向基函数的 SVM性能最好。
1
面部表情评分法.pdf
2021-12-26 22:00:25 46KB
1
我的Github项目:人脸面部表情识别项目的数据集文件,项目地址:https://github.com/He-Xiang-best/Facial-Expression-Recognition
2021-12-22 15:12:31 849.41MB 深度学习 计算机视觉 pytorch
1
FER-面部表情识别 这项工作是为了证明以下问题: : 使用卷积神经网络和OpenCV构建了实时面部检测器和情绪分类器。 CNN模型已经过调整,即使在低端设备上也具有出色的性能。 使用说明 按照进行神经网络训练。 文件结构: FER_CNN.ipynb-训练CNN的教程 FER.py-使用预先训练的模型进行推断 model.json-神经网络架构 weights.h5-训练过的模型权重 安装 建议使用Python虚拟环境。 用于模型预测 pip install -r requirements.txt 要么 pip install opencv-python pip instal
2021-12-20 15:34:36 42.98MB python opencv keras jupyter-notebook
1
我的Github项目:人脸面部表情识别项目的模型文件,项目地址:https://github.com/He-Xiang-best/Facial-Expression-Recognition
2021-12-17 12:08:32 317.46MB 深度学习 计算机视觉 pytorch
1
面部表情疼痛量表.pdf
2021-12-07 09:03:37 46KB
FER 基于FER2013 Kaggle数据集的面部表情识别模型。 当前模型可实现约67%的精度。 在添加更多训练数据集以提高概括能力的过程中。 对模型体系结构进行一些调整可能会提高准确性。
2021-12-04 20:06:43 802KB JupyterNotebook
1
基于卷积神经网络及特征提取的面部表情识别算法.pdf
2021-11-24 18:10:23 1.47MB 神经网络 深度学习 机器学习 数据建模