基于STM32人体感应语音识别语音提示智能风扇(源码,原理图,实物图,论文,功能设计介绍)。 功能:设计一基于stm32的智能风扇系统,该系统能够根据语音识别开启或关闭风扇,能够根据环境的温度自动调节风扇的转速, 当检测到人时开始计时,当连续计时时间超过设定值,给出“久坐超时”的语音提示,15秒内没有检测到人,自动关闭风扇。 硬件:stm32f103c8t6最小系统板,0.96寸oled显示模块0.91 1.3 1.54,HC-SR505(人体感应模块),DS18b20温度传感器模块,轻触式开关 ,JQ8900-16P模块(语音播报模块),喇叭,LD3320语音识别模块。风扇,TB6612FNG电机驱动模块。面包板(用的面包板,无pcb设计)。 轻触式开关按键可以实现开启风扇的默认模式、一档、二档、三档和关闭。 风扇有三种转速,也能用语音进行控制。语音能够开启和关闭风扇。 首先,接通电源,风扇在初始状态下,风扇处于关闭状态。 按下默认模式的按键后,系统进入默认状态,风扇开始工作并根据环境温度自动调节转速。同时,系统通过人体检测模块实时监测周围是否有人。。。。。。。。
2025-04-14 10:17:04 11.41MB stm32 语音识别
1
海康网络设备SDK,版本CH-HCNetSDKV6.1.9.48_build20230410,实现视频播放,云台控制,语音对讲等常用功能,Windows下亲测可用
2025-04-13 23:33:07 38MB 语音对讲 云台控制
1
语音识别关键论文合集,Automatic Speech Recognition has been investigated for several decades, and speech recognition models are from HMM-GMM to deep neural networks today. It's very necessary to see the history of speech recognition by this awesome paper roadmap. I will cover papers from traditional models to nowadays popular models, not only acoustic models or ASR systems, but also many interesting language models.
2025-04-13 14:27:13 9KB 语音识别
1
在当今信息化社会,语音识别技术已经成为人机交互中不可或缺的一部分。随着人工智能技术的飞速发展,语音识别技术的应用越来越广泛,它让机器能够理解人类的语音指令,并将其转化为文本,极大地便利了人们的生活和工作。在这样的背景下,Python作为一种简单易学且功能强大的编程语言,成为了实现语音识别技术的热门选择。 本次提供的文件名为"pythonyysb-python语音识别源代码.zip",从名称可以看出,该压缩包内含的是一套专门用于Python语言的语音识别源代码。这些代码的作用是实现将语音信号转换成文字的功能,即语音转文字,音频转文本内容。这不仅表明了Python在处理复杂任务时的强大能力,也展现了语音识别技术与Python结合的实践案例。 语音识别技术的实现涉及到多个学科和技术领域,包括信号处理、模式识别、机器学习和自然语言处理等。在信号处理领域,系统需要首先捕获语音信号,并将其从模拟信号转换为数字信号,然后进行预处理,例如消除噪声和增强语音信号。在模式识别领域,系统会从处理过的信号中提取特征,如音素、音节和词汇等。机器学习算法则根据这些特征训练模型,以便识别和理解语音内容。自然语言处理技术则用于对识别出的文本进行进一步处理,比如分词、语义分析和语法分析,从而达到更精确的语音转文字效果。 使用Python实现的语音识别系统具有较高的灵活性和扩展性。开发者可以在已有的开源库基础上,比如SpeechRecognition、pyAudio和NLTK等,快速构建出实用的语音识别应用。这些库提供了丰富的接口和工具,可以处理复杂的语音识别任务,大大降低了开发难度和周期。同时,Python的编程风格简洁明了,便于维护和升级,使得代码更加易于理解和扩展。 语音识别技术的进步不仅仅在于提高识别准确率,还包括了在不同环境下的适应能力,如噪声环境中的鲁棒性,不同口音和语速的适应性,以及实时处理的能力等。随着研究的深入和技术的不断迭代,语音识别技术的应用场景也在不断扩大。例如,在智能家居、车载系统、语音助手和交互式教育平台等领域,语音识别技术正扮演着越来越重要的角色。 在技术实现的同时,也要考虑到语音识别系统可能存在的隐私和安全问题。语音数据的采集、存储和处理都需要严格遵守相关法律法规,并采取有效措施保护用户的隐私信息不被泄露。此外,系统设计中还需要考虑抗攻击能力,避免恶意使用语音识别技术进行欺诈或干扰正常应用。 Python语言的灵活性、易用性和丰富的库支持使得它成为了开发语音识别应用的理想选择。语音识别技术的发展不仅展示了人工智能的前沿成果,也为我们提供了更丰富、便捷的交互方式。随着技术的不断进步,我们有理由相信,语音识别技术将会在未来的智能应用中占据更加重要的地位。这份"pythonyysb-python语音识别源代码.zip"文件无疑为我们提供了一个深入研究和实践语音识别技术的良好起点,期待开发者能够在此基础上创造出更多优秀的语音识别应用。
2025-04-13 11:04:36 247.11MB python 语音识别
1
在本文中,我们将深入探讨如何使用科大讯飞的语音识别技术与Java编程语言结合,以实现将输入的音频文件转换为可编辑的文字内容。科大讯飞是中国领先的语音技术提供商,其API提供了高效且准确的语音转文本功能,广泛应用于智能硬件、移动应用、客服系统等多个领域。 我们需要理解科大讯飞的语音识别服务工作原理。它基于深度学习算法,能够实时或非实时地将语音信号转化为文字。这项服务提供了多种接口,包括RESTful API,适用于各种开发语言,如Java。开发者通过调用这些接口,可以轻松集成到自己的应用程序中。 在Java环境中,我们可以使用HttpURLConnection或第三方HTTP库(如Apache HttpClient或OkHttp)来发送HTTP请求。科大讯飞的API通常需要API密钥,所以第一步是注册开发者账号并获取API Key和Secret。这些密钥用于身份验证,确保只有授权的应用才能访问服务。 接下来,我们需要构建一个请求,包含音频文件作为请求体。科大讯飞的API支持多种音频格式,如pcm、wav等。在Java中,可以使用JAVE(Java Audio Video Encoder)或者Java Sound API来处理音频文件。将音频数据转换为API所需的格式,并编码成Base64字符串,以便通过HTTP请求发送。 在发送请求后,API会返回一个JSON响应,其中包含识别出的文字内容。解析这个JSON响应,提取文字内容,然后可以进行进一步的处理,如编辑、存储或展示。 以下是一个简单的Java代码示例,演示了如何使用HttpURLConnection发送POST请求到科大讯飞的语音识别API: ```java import java.io.*; import java.net.HttpURLConnection; import java.net.URL; import java.nio.charset.StandardCharsets; public class SpeechToText { private static final String API_URL = "https://api.xunfei.cn/rtasr/v1/async"; private static final String API_KEY = "your_api_key"; private static final String API_SECRET = "your_api_secret"; public static void main(String[] args) throws IOException { // 读取音频文件 byte[] audioBytes = readFile("path_to_your_audio_file"); // 转换为Base64字符串 String base64Audio = Base64.getEncoder().encodeToString(audioBytes); // 构建请求参数 String param = "{\"format\":\"wav\",\"rate\":16000,\"token\":\"\",\"dev_pid\":1537,\"channel\":1,\"cuid\":\"\",\"url\":\"\",\"callback\":\"\",\"speech\":\""+base64Audio+"\"}"; // 发送POST请求 HttpURLConnection connection = (HttpURLConnection) new URL(API_URL).openConnection(); connection.setRequestMethod("POST"); connection.setRequestProperty("Content-Type", "application/json; charset=UTF-8"); connection.setRequestProperty("Authorization", "Bearer " + generateAccessToken()); connection.setDoOutput(true); try(OutputStream os = connection.getOutputStream()) { os.write(param.getBytes(StandardCharsets.UTF_8)); } // 获取响应 int responseCode = connection.getResponseCode(); if (responseCode == HttpURLConnection.HTTP_OK) { BufferedReader in = new BufferedReader(new InputStreamReader(connection.getInputStream())); String inputLine; StringBuffer content = new StringBuffer(); while ((inputLine = in.readLine()) != null) { content.append(inputLine); } in.close(); // 解析并处理返回的JSON String jsonString = content.toString(); // 这里需要自定义解析方法,例如使用Jackson或Gson库 } else { System.out.println("请求失败,响应码:" + responseCode); } } private static String generateAccessToken() { // 使用API_KEY和API_SECRET生成Access Token // 实际项目中可能需要实现缓存和刷新机制 // 这里省略具体实现 } private static byte[] readFile(String filePath) throws IOException { // 读取音频文件到字节数组,这里省略具体实现 } } ``` 在rtasr-demo压缩包中,可能包含了这个简单的Java示例项目,包括必要的音频处理和HTTP请求的代码。通过运行这个示例,你可以看到如何将音频文件发送到科大讯飞的API,并获取到识别后的文字结果。记得替换`API_URL`、`API_KEY`和`API_SECRET`为你自己的值,并确保音频文件路径正确。 总结,本文详细介绍了如何利用科大讯飞的语音识别服务和Java编程语言,实现音频文件到可编辑文字的转换。通过理解API的工作原理,设置请求参数,发送HTTP请求以及处理响应,开发者可以方便地将这项技术集成到自己的应用程序中,提升用户体验,特别是在需要将语音内容转化为文本的场景下,如语音助手、电话录音转写等。
2025-04-11 15:00:29 1.38MB 语音识别 java
1
讯飞语音技术已经广泛应用于各个领域,其中离线命令词识别功能,通过语音识别技术实现对命令词的准确识别,让上位机软件可以通过语音指令进行操作控制,极大地方便了我们的工作和生活。在这项技术的支持下,用户可以通过语音控制各种设备,例如可以实现像操作小米电视一样的体验,让智能设备的使用变得更加人性化和便捷。 本测试demo是基于Windows 10操作系统,使用Visual Studio 2022开发环境,采用C#语言编写而成,主要展示了如何在上位机软件中集成讯飞语音识别功能。为了实现这一目标,开发者需要将讯飞语音识别SDK集成到软件开发项目中,通过调用相关API接口,接收用户的语音输入并进行处理,最后将语音信号转换为可识别的文本命令,以此来控制软件界面或者执行相关操作。 通过这个测试demo,开发者可以进一步开发出具有语音识别和语音控制功能的上位机软件。这种软件不仅能够提高工作效率,还可以增加人机交互的趣味性,尤其对于一些需要进行复杂操作但又不方便使用传统输入设备的场景,具有很高的实用价值。 在进行离线命令词识别的开发过程中,需要考虑到语音识别的准确性、响应速度和抗干扰能力等问题。通常来说,离线命令词识别技术要求设备本身具备一定的计算能力,以便快速准确地完成识别过程。此外,开发者还需要考虑如何提高软件对各种口音和方言的适应能力,以及在嘈杂环境中仍能保持良好的识别效果。 测试demo中提及的文件名称列表,展示了开发过程中所需的基本文件结构和工具。例如,“测试讯飞语音WinForm”可能是演示程序的主要界面文件,“.vs”是Visual Studio的项目文件夹,“XFSount2Text”可能是一个中间转换模块,用于将讯飞语音识别的结果转换为可操作的文本,“WindowsFormsApp3.sln”是解决方案文件,用于管理和构建整个项目,而“WindowsFormsApp3”可能是指示整个应用程序的目录,“packages”文件夹则包含了项目所依赖的各类库文件。 在实现上位机语音控制功能时,软件的稳定性和用户体验也是不可忽视的因素。开发者需要确保软件运行流畅,对用户命令反应迅速,同时也要注重界面设计,使得语音控制界面简洁直观,方便用户操作。此外,为了确保语音识别的准确性和可靠性,还需要进行充分的测试,以覆盖各种可能的使用场景和用户操作习惯。 随着人工智能技术的不断进步,语音识别和语音控制技术将在未来拥有更广泛的应用前景。通过不断的技术积累和创新,我们有理由相信,语音控制将为智能设备的操作带来革命性的变革,进一步提升人们的智能化生活体验。
1
Android作为全球最受欢迎的移动操作系统之一,其开放性和灵活性为开发者提供了广泛的应用创新空间。在众多应用领域中,语音识别技术的集成尤为引人注目,尤其是在实现设备的语音唤醒功能方面。开源项目Sherpa提供了一个针对Android平台的关键词检测解决方案,支持通过语音输入来激活或唤醒设备。 关键词检测,又称为语音唤醒,是指在设备处于低功耗状态时,能够通过识别预设的关键词来唤醒设备,并执行相应的语音识别任务。这种技术广泛应用于智能助手、智能家居控制和车载语音交互等场景。它不仅提高了设备的用户体验,也增强了设备的交互性。 开源项目Sherpa的出现,为Android开发者提供了一种简便、高效的方式来集成关键词检测功能。该项目基于机器学习算法,能够学习和识别用户的语音指令,并通过预先设定的关键词来触发特定的应用程序或服务。这种开源性意味着开发者可以自由地获取和使用该项目,无需支付额外的费用,这对于资源有限的初创公司或个人开发者来说尤为重要。 Sherpa项目的关键词检测功能,其工作流程通常包括语音信号的捕获、特征提取、模型匹配和响应处理等步骤。设备上的麦克风会捕获到用户的语音信号;然后,系统会对这些信号进行预处理,提取出语音特征;接下来,利用训练好的模型对提取出的特征进行匹配,以识别出是否包含了预设的关键词;如果匹配成功,系统会触发相应的响应,比如唤醒设备或执行特定的操作。 在集成Sherpa到Android应用的过程中,开发者需要关注几个关键技术点。首先是模型的准确性,这直接关系到关键词检测的成功率。其次是响应速度,这影响了用户体验,尤其是在需要快速反应的场景下。再者是资源占用,优化后的算法应当尽可能地减少对设备CPU和内存的占用,以避免对其他应用产生不良影响。此外,还需要考虑到不同设备、不同环境下语音信号的差异性,保证系统的鲁棒性。 Sherpa项目的应用不仅限于个人或商业项目,也涉及到教育、科研等多个领域。开源特性使得该项目能够得到社区的持续贡献和改进,这在一定程度上推动了语音识别技术的发展。当然,随着技术的不断进步,尤其是在深度学习和人工智能领域的突破,未来的关键词检测技术将更加智能和高效。 在Android开发社区中,开源项目的普及为技术创新提供了丰富的土壤。项目如Sherpa等关键词检测工具的出现,无疑降低了开发者在语音识别领域的门槛,加速了智能应用的开发进程。这些项目的成功应用案例,进一步证明了开源技术在推动移动应用发展方面的重要作用。 Android平台上利用开源项目Sherpa实现的关键词检测技术,已经成为推动语音交互应用发展的关键工具。其开源、免费的特点,不仅降低了技术门槛,也促进了整个行业的创新与进步。通过不断地优化和发展,Sherpa等项目将继续在提高用户体验和拓展应用功能方面扮演重要角色。对于Android开发者而言,掌握并应用这类开源工具,将是提升自身竞争力的关键所在。
2025-04-10 11:50:01 226.5MB android 开源免费 语音唤醒
1
抢答器实现的功能是: 1、四人通过按键抢答,最先按下按键的人抢答成功,此后其他人抢答无效。 2、每次只有一人可获得抢答资格,一次抢答完后主持人通过复位按键复位,选手再从新抢答。 3、有从新开始游戏按键,游戏从新开始时每位选手有5分的初始分,答对加1分,答错扣1分,最高分不能超过9分,当选手得分减为0时取消该选手抢答资格。 4、选手抢答成功时其对应的分数闪烁。
2025-04-03 21:57:15 466KB 编程语言
1
Emotional-Speech-Data(ESD)数据集,我们选取数据样本0001段,一共有1500个样本,包含Fear、Sad、Netural、Happy、Angry。每种类型的样本各300个,共1500个样本。数据集包含男女老少各种年龄段的语音数据,语音语种为中文。
2025-04-03 04:57:53 160.05MB 数据集 语音情感识别
1
【按键语音播报】是一种在特定应用场景下非常实用的技术,尤其对于网吧收银机充点卡操作来说,可以显著提升工作效率并减少错误。该技术的主要功能是将用户按下键盘的动作转化为语音提示,使得操作员能够通过听觉来确认输入的内容,尤其是在环境嘈杂或者需要视觉注意力集中在其他地方的情况下。 我们要理解什么是“按键”。在计算机领域,按键通常指的是键盘上的键,用户通过按压这些键来输入文字、执行命令或进行各种交互。在“按键语音播报”系统中,每一个按键被按下时,都会触发一个对应的语音反馈,使得用户能够知道他们输入了什么,而无需看屏幕。 语音播报则是这种技术的核心部分。它利用了文本转语音(Text-to-Speech, TTS)技术,将输入的文字转换成可听见的语音。TTS技术广泛应用于许多领域,包括无障碍应用、自动语音应答系统以及教育软件等。在这个特定的应用中,TTS将用户按下的每个键对应的字符转换为语音,通过扬声器播放出来,实现对按键操作的实时反馈。 "Smile键盘发声器.exe"很可能是一个实现这一功能的软件程序,它的作用是接收键盘输入并将其转换为语音。这类软件通常包含内置的TTS引擎,可以设置不同的语音类型、语速和音调,以适应不同的用户需求。例如,用户可能希望选择清晰、易懂的女性声音,或者调整速度以适应快节奏的工作环境。 而"krnln.fnr"可能是一个配置文件,用于存储用户的个性化设置,如语音播报的开关状态、播报速度、音量大小等。有时,这样的文件也用于存储特定语言的发音规则,以确保软件能准确地读出各种字符和组合。 在网吧收银机充点卡的场景下,按键语音播报可以防止因视觉分心或误输入导致的错误。比如,当顾客报出充值金额时,收银员可以专心于键盘输入,同时听到的语音回馈会确认输入是否正确。这样,即使在繁忙时段或者收银员视线被挡的情况下,也能保证操作的准确性,提高了服务质量和客户满意度。 "按键语音播报"是一项实用的技术,通过结合键盘输入和语音反馈,提供了一种有效的人机交互方式。在特定环境中,尤其是需要高效且准确输入的场合,如网吧收银,它能大幅提升工作效率并减少人为错误。通过软件如"Smile键盘发声器.exe",我们可以轻松实现这一功能,并通过配置文件如"krnln.fnr"进行定制,以满足不同用户的需求。
2025-04-01 21:03:56 680KB 语音播报
1