最新版MTK6236 6225 6226 6223 6235 6253手机开发套件 QQ:676797311 6236 6225 6223 6226 6235 6253 MTK量产版系列开发套件(高仿iphone4) 硬件 特性: 1.3.0寸超大液晶显示屏TFT,支持触摸 2.130万像素摄像头 3.立体声蓝牙 4.FM 5.支持甩歌(预留接口) 6.支持手写 7.双SIM卡 8.支持永不断电功能(无电池情况下仍然可以通话) 9.支持4频GSM 10 立体声喇叭 器材清单: 1.开发用手机板 2.程序下载线一条 3.USB线一条 4.旅行充电器一个 5.锂电池一个 软件特性: 完整手机代码 Mtk Java虚拟机源码 支持mrp文件扩展安装 支持MP4,MP3等 初步提供监控解决方案 提供完整的scoket操作实例,加速应用开发 提供完整的SP的整合实例,加速应用开发 环境工具: 1.烧写程序下载工具 flashtool 2 ads1.2 ,ads1.2update,activeperl:编译工具和辅助工具 3.Trace 工具: Catcher_V3.12.07.rar 4.手机工程测试工具: META 5.UI制作工具: MCT 文档清单: 1 mtk 软件培训 (MTK_Training) 2 mtk 软件系统和调试 (SW System and Debug ) 3.mtk 软件MMI设计(MMI Design Doc) 4.mtk 软件设备驱动(Device Driver) 5.Mtk手机校准(Factory) 6.Mtk手机工具使用说明(Tool Document)
2026-01-18 17:14:53 16KB 6236 6235 6253
1
展讯6800L的代码一,总共有12个包,有需要的可以下。
2026-01-18 17:08:35 58MB
1
由于提供的信息不足,无法生成详细的文章知识。需要更多的文件信息才能提供相关的知识点。
2026-01-18 06:04:48 303.91MB harmonyos harmonyos
1
本文详细介绍了如何为QT软件实现一机一码的加密与授权功能。主要内容包括生成机器码(通过获取CPU和MAC地址信息)、加入自定义公钥、使用MD5加密组合明文、判断是否授权以及授权成功后写入注册表等核心步骤。文章提供了具体的代码实现和中心思想,帮助开发者保护自己的软件免受未经授权的使用。通过这种方法,开发者可以生成唯一的机器码和授权码,确保软件只能在授权的设备上运行。 文章详细阐述了在QT软件开发中实现一机一码加密授权的具体技术细节。文章指出,为了保护软件的版权和防止非法复制,开发者需要在软件中加入特定的授权机制。实现此机制的第一步是生成机器码,这通常涉及到获取计算机硬件的唯一标识,如CPU序列号和MAC地址。这些信息对于每一台机器都是独一无二的,因此可以用来作为生成授权码的基础。 文章进一步介绍,为了确保授权码的安全性,开发者会使用MD5算法对组合的明文数据进行加密。MD5是一种广泛使用的哈希函数,能将数据转换成128位的哈希值。由于MD5是不可逆的,这为授权码提供了一定程度的安全保障。 接下来,文章解释了如何将生成的授权码与软件内部的自定义公钥进行匹配。自定义公钥在软件中预先设定,并且与其配对的私钥只有软件开发者持有。这一机制确保了只有正确配对的公钥才能解密相应的授权码,从而验证软件是否被合法授权。 文章详细讲解了授权成功后,如何将授权信息写入操作系统的注册表中。写入注册表可以确保软件的授权状态在操作系统级别得到记录和维护,即便是在软件重新安装或者系统重装后,授权信息依然保持有效。 文章还提供了一系列的代码示例,这些代码示例不仅帮助理解整个加密和授权流程的逻辑,也为开发者提供了可以直接在项目中使用的参考。这些代码示例覆盖了从获取硬件信息到加密、比对、注册表操作的整个过程。 通过实现一机一码的加密授权功能,开发者可以有效地控制软件的使用范围,防止软件的非法传播和使用。这一机制对于确保软件销售收入、维护品牌形象以及遵守知识产权法律具有重要意义。 文章最终强调了该加密授权方案的中心思想:通过技术手段确保软件的合法授权使用,同时提供给用户一个明确的授权提示,使得用户体验更为直观和友好。
2026-01-17 17:15:50 53KB 软件开发 源码
1
本资源为手写数字识别分类的入门级实战代码,代码使用pytorch架构编写,并且无需显卡,只通过CPU进行训练。 代码编写了一个简单的卷积神经网络,输入为单通道的28×28图片,输出是一个10维向量。 数据集的格式应在代码文件同目录下包含两个文件夹,分别为训练文件夹和测试文件夹,训练和测试文件夹下各包含10个以0~9数字命名的文件夹,文件夹中包含了对应的若干张图片文件。 代码在每轮训练结束后会输出训练集分类正确率和测试集分类正确率,并且记录在txt文件中。
1
在当今科学技术飞速发展的时代,仿真技术在教育和研究中扮演着越来越重要的角色,特别是在光学领域,如涡旋光和折射现象的研究上,仿真软件提供了前所未有的学习和探索平台。Comsol仿真软件,作为一种强大的多物理场耦合计算软件,为学习者和研究者提供了模拟和分析涡旋光及折射现象的工具。涡旋光是指光波的相位和幅度形成涡旋结构,这种光束在物理特性上具有独特的性质,例如光学扭矩和自加速效应等。折射现象则是光学中常见的一种现象,它描述了光线从一种介质进入到另一种介质时,由于速度的变化导致传播方向发生改变的规律。 Comsol仿真软件通过其丰富的物理场接口和强大的计算功能,允许用户创建复杂的物理模型,模拟涡旋光的产生、传输以及与物质相互作用的过程。它不仅可以帮助学习者直观地理解光的涡旋结构,还可以通过仿真展示不同折射率介质对光线传播的影响。此外,软件中的代码和仿真文件说明为用户提供了深入研究的途径,使得使用者可以更精确地控制模拟参数,以获得更准确的仿真结果。 仿真学习涡旋光和折射的强大工具一文中,作者详细阐述了仿真技术在光学教育中的重要性,并以Comsol仿真软件为例,展示了如何利用仿真工具来理解和掌握复杂的光学概念。文章中不仅介绍了涡旋光和折射的基础知识,还提供了相应的仿真模型构建方法,使得学习者能够在仿真实验中更加深入地探究涡旋光的性质和折射现象的规律。 在仿真助力学习涡旋光与折射的引言仿真是一款功能强大的工具中,作者强调了仿真工具在光学教育中的辅助作用,它不仅可以简化复杂的物理现象,还能让学习者通过实践操作加深对理论知识的理解。仿真软件所具有的可视化功能,使得抽象的物理概念和复杂的计算过程变得直观易懂,从而极大地提高了学习效率和研究的深入程度。 为了更好地理解仿真文件的作用,我们还应该关注提供的文件名称列表,其中包括了.docx和.html格式的文档,以及.jpg格式的图像文件。这些文档和图像文件是学习者在使用Comsol仿真软件时的重要参考资料,它们包含着对涡旋光和折射仿真过程的详细说明,以及仿真结果的可视化展示。通过这些文件,学习者可以获得关于如何搭建仿真模型、如何设置参数以及如何解读仿真结果的指导,这些都是光学学习中不可或缺的部分。 Comsol仿真软件为涡旋光和折射的研究提供了一个强大的平台,它不仅能够帮助学习者更好地理解复杂的光学概念,还能辅助研究者进行深入的光学研究。通过仿真模型的构建和仿真结果的分析,学习者和研究者可以更加直观地观察到涡旋光的涡旋结构以及折射现象的物理过程,从而在光学领域取得新的发现和突破。
2026-01-17 11:39:38 929KB paas
1
官方例程代码,里面有新模式和旧模式,主要是引脚初始化麻烦,我看手册初始化错了,还是得官方例程
2026-01-16 23:56:48 84KB
1
差分曼彻斯特编码是一种在数字通信中广泛采用的编码技术,它主要用于数据传输过程中的同步和信号的编码表示。在差分曼彻斯特编码中,数据位的表示是通过比较相邻的两个时钟周期的电压水平来实现的。具体来说,在每个比特时间的中间进行电平切换,如果是在中间切换之前不进行电平切换,则表示“0”,反之则表示“1”。这种编码方式能够在不增加额外同步信号的情况下,通过数据位之间的相对电平变化,有效地实现接收端与发送端之间的同步,从而大大提高了通信的可靠性。 在数字通信系统中,差分曼彻斯特编码具有其独特的优势。由于其在每个比特周期的中间都有电平跳变,这就意味着它具有较高的位传输率,同时其自身携带的时钟信息使得接收端更容易实现同步。差分曼彻斯特编码对信号的失真具有一定的鲁棒性,这在传输介质复杂或者长距离传输时尤为重要。由于其自身特点,差分曼彻斯特编码在某些通信标准中被采纳,例如在令牌环网络中就作为物理层的一部分。 在实现差分曼彻斯特编解码功能模块时,Verilog代码可以提供硬件描述语言的解决方案。通过纯Verilog代码来实现这一功能模块,可以让设计者更精确地控制硬件资源,同时在芯片设计和电路设计中得到广泛应用。Verilog代码可以详细描述差分曼彻斯特编码的逻辑规则,如何在数字电路中实现时钟的恢复,以及如何将原始数据信号转换为差分曼彻斯特编码信号。相应地,解码过程的Verilog代码则将差分曼彻斯特编码信号还原为原始数据信号。 在实际应用中,差分曼彻斯特编解码技术不仅应用于物理层的数据通信,而且在某些特定的通信协议中扮演着重要角色。例如,以太网物理层协议就曾经使用过差分曼彻斯特编码,它定义了物理媒体的电气特性,如信号的电平,以及如何编码数据。这些协议中对差分曼彻斯特编码的具体实现细节,包括同步方法和时钟恢复机制,都有严格的规定,确保了网络设备之间可以准确地进行数据交换。 在进行差分曼彻斯特编解码技术分析时,通常需要深入理解其工作原理和实现机制。文档中提到的“技术分析文章”,可能涵盖了对差分曼彻斯特编码的原理性介绍、在不同通信环境下的应用情况、遇到问题的解决方案以及对编解码效率的评估等内容。这些技术分析文章不仅为通信工程师提供了实用的技术支持,也为研究者提供了学术上的参考。 此外,图片文件(例如1.jpg)可能用于直观展示差分曼彻斯特编码过程中的信号波形,帮助人们更直观地理解其工作过程。在文档和文章中,还会包含对差分曼彻斯特编解码功能模块的详细说明,包括输入输出信号的定义、模块的接口描述以及模块在不同情况下的行为描述。这些内容对设计者来说是必不可少的,因为它们直接关系到模块能否被正确地集成和使用。 差分曼彻斯特编解码技术是数字通信领域中的重要技术,它提供了可靠的数据传输和同步机制。通过Verilog代码实现的差分曼彻斯特编解码功能模块,不仅可以有效地应用于硬件设计中,还可以通过技术文档和分析文章来为工程师和研究者提供深入的技术支持和参考资料。
2026-01-16 20:32:35 158KB kind
1
差分曼彻斯特编码与解码的概念及其在数字通信中的重要性,并深入探讨了如何利用Verilog语言实现差分曼彻斯特编解码功能模块。文章首先简述了差分曼彻斯特编码的特点,即每个位周期内都有一次跳变,通过跳变方向区分逻辑'1'和逻辑'0'。接着,文章展示了具体的Verilog代码实现方法,包括编码器和解码器两大部分。编码器部分采用状态机控制编码过程,根据输入数据与时钟信号生成相应的编码信号;解码器部分则通过边沿检测器识别跳变方向并还原原始数据。最后,文章总结了现有实现的优点与不足,并对未来发展方向进行了展望。 适用人群:对数字通信和硬件描述语言感兴趣的电子工程专业学生、嵌入式系统开发者及FPGA工程师。 使用场景及目标:适用于需要理解和掌握差分曼彻斯特编码机制的人群,特别是那些希望将理论应用于实际项目中的人士。通过学习本篇文章,读者能够掌握用Verilog实现差分曼彻斯特编解码的方法,为进一步研究复杂的通信协议打下坚实的基础。 其他说明:文中提供的代码片段仅为示例,实际应用时还需考虑更多因素如时钟同步、去抖动等问题。此外,随着通信技术和硬件描述语言的进步,未来有望开发出性能更高的编解码解决方案。
2026-01-16 20:27:10 377KB
1
本文详细介绍了DeepSeek如何通过结合Kubernetes的容器编排能力和Slurm的高性能计算作业调度,构建出一个灵活高效的混合调度系统,以解决超大规模AI训练场景中的GPU资源调度问题。文章深入解析了混合调度的必要性、核心架构设计、关键组件交互、实战配置示例以及性能优化实践,并展示了该方案在实际应用中的显著收益,如作业排队时间减少78%、GPU碎片率降低75%等。此外,还探讨了未来演进方向,如异构资源统一调度和AI4Scheduling等。 在当今的大规模人工智能(AI)训练领域,资源调度显得尤为重要。随着深度学习技术的快速发展,对于GPU等高性能计算资源的需求与日俱增。传统的资源调度系统已无法满足现阶段的需求,因此,有必要构建一种新型的调度架构来有效管理这些资源。 DeepSeek公司提出了一种结合Kubernetes和Slurm的混合调度架构,旨在打造一个灵活且高效的系统。Kubernetes以其容器化能力而闻名,可以有效管理各种资源,实现应用的快速部署、扩展和管理。Slurm则是一款高性能的计算作业调度系统,长期以来在科学计算和工程计算领域被广泛使用。 混合调度架构的核心在于,它能够同时发挥Kubernetes在容器化应用管理上的优势以及Slurm在高性能计算任务调度上的长处。通过这种组合,混合调度架构不仅能够处理各种复杂的应用场景,还能在保证高效率的同时对GPU等资源进行优化分配。 该架构的设计着重于解决超大规模AI训练场景中GPU资源调度的难题。混合调度系统通过合理分配和调度GPU资源,大幅减少了作业排队时间,降低了GPU碎片率,从而提高资源利用率和作业执行效率。文章中也提到了系统构建过程中的关键组件交互和实际配置的示例,为相关领域的工作者提供了实践中的参考。 在性能优化方面,该混合调度架构已经取得了显著的效果。实例数据显示,作业排队时间减少了78%,GPU碎片率降低了75%,这些数据有力地证明了混合调度系统在实际应用中的有效性。此外,文章还探讨了该架构的未来发展,包括如何更好地实现异构资源的统一调度,以及将人工智能技术应用于调度决策的AI4Scheduling等方向。 DeepSeek的混合调度架构是一个开创性的解决方案,为超大规模AI训练场景下的资源调度提供了全新的思路和实践案例。随着AI技术的进一步发展,该架构有望在未来得到更广泛的应用和不断的优化升级。
2026-01-16 18:30:53 5KB Kubernetes 资源调度
1