基于循环神经网络的新闻话题分类的源码
2021-12-30 13:07:16 8KB 人工智能 自然语言处理 RNN
1
使用神经网络分析电影评论1的源码
2021-12-30 13:07:15 4KB 人工智能 循环神经网络
1
人工智能,rnn,股票,因子,华泰人工智能系列之九-人工智能选股之循环神经网络模型.,华泰人工智能系列之九-人工智能选股之循环神经网络模型.
2021-12-29 10:38:13 1.78MB 人工智能
1
循环神经网络是一种具有记忆功能的神经网络,适合序列数据的建模。它在语音识别、自然语言处理等领域取得了成功。是除卷积神经网络之外深度学习中最常用的一种网络结构。在本文中,SIGAI将和大家一起回顾循环神经网络的发展历程与在各个领域的应用。
2021-12-28 11:18:37 1.4MB 循环神经网络 机器学习 视觉
1
文章目录一. 传统RNN二. GRUstep 1 : 载入数据集step 2 : 初始化参数step 3: GRUstep 4: 训练模型简洁实现GRU三. LSTMstep 1: 初始化参数step 2: LSTM 主函数step 3: 训练模型step 4: 简洁实现 一. 传统RNN RNN存在的问题:梯度较容易出现衰减或爆炸(BPTT) 二. GRU ⻔控循环神经⽹络:捕捉时间序列中时间步距离较⼤的依赖关系 重置⻔有助于捕捉时间序列⾥短期的依赖关系; 更新⻔有助于捕捉时间序列⾥⻓期的依赖关系 step 1 : 载入数据集 import os os.listdir('/home
2021-12-28 00:20:00 251KB c char char函数
1
一、过拟合欠拟合及其解决方案 我们将探究模型训练中经常出现的两类典型问题: 一类是模型无法得到较低的训练误差,我们将这一现象称作欠拟合(underfitting); 另一类是模型的训练误差远小于它在测试数据集上的误差,我们称该现象为过拟合(overfitting)。 在实践中,我们要尽可能同时应对欠拟合和过拟合。虽然有很多因素可能导致这两种拟合问题,在这里我们重点讨论两个因素:模型复杂度和训练数据集大小。 二、梯度消失梯度爆炸 深度模型有关数值稳定性的典型问题是消失(vanishing)和爆炸(explosion)。 当神经网络的层数较多时,模型的数值稳定性容易变差。 假设一个层数为的多层感知
2021-12-22 20:23:31 150KB 循环 循环神经网络 梯度
1
使用循环神经网络(RNN)实现简易的二进制加法器,利用python中numpy包实现。
2021-12-13 21:56:50 61KB RNN
1
import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data mnist=input_data.read_data_sets('mnist_data/',one_hot=True) #注意这里用了one_hot表示,标签的形状是(batch_size,num_batches),类型是float,如果不用one_hot,那么标签的形状是(batch_size,),类型是int num_classes=10 batch_size=64 hidden_dim1=32 hidden_dim2=64
2021-11-25 08:24:37 44KB cell num rnn
1
独立递归神经网络 简单TensorFlow实现 Shuai Li等人 。 作者在Theano和Lasagne中的原始实现可在找到。 概要 在IndRNN中,循环层中的神经元彼此独立。 基本的RNN用h = act(W * input + U * state + b)计算隐藏状态h 。 IndRNN使用逐元素向量乘法u * state这意味着每个神经元都具有与其最后一个隐藏状态相关的单个递归权重。 IndRNN 可以有效地与ReLU激活功能一起使用,从而更容易堆叠多个递归层而不会使梯度饱和 允许更好的解释性,因为同一层中的神经元彼此独立 通过调节每个神经元的周期性体重来防止梯度消失和爆炸 用
2021-11-23 16:49:59 319KB tensorflow rnn paper-implementations indrnn
1