内容概要:本报告系统阐述了大模型技术驱动下金融风险决策的智能化新范式,全面梳理了从传统风控向AI赋能的感知智能、认知智能到决策智能的演进路径。报告重点解析了以大模型为核心,融合多模态数据集成、知识图谱、RAG、智能Agent等技术的风险态势感知体系,并通过“AI挖掘实验室”“智能交互”“动态调优”等实践案例,展示了AI在风险画像、规则生成、策略优化、排查提效等方面的应用。同时,报告也深入探讨了模型可解释性、数据安全、响应时效等现实挑战,并提出“MaaS”(模型即服务)等协同解决路径,最终展望了以数据为基、AI为引擎、业务价值为导向的未来智能风控生态。; 适合人群:金融机构风控、科技部门从业者,AI技术产品与解决方案负责人,以及关注金融科技前沿发展的研究人员和决策管理者。; 使用场景及目标:①理解大模型如何重构金融风控的技术架构与业务流程;②学习多模态数据、知识图谱与大模型协同驱动的智能风控实践方法;③探索AI在规则挖掘、策略生成、动态监控等场景中的落地模式与效能提升路径;④洞察智能风控面临的核心挑战与未来发展趋势。; 阅读建议:此报告兼具战略高度与技术深度,建议结合自身业务场景,重点关注“AI挖掘实验室”“智能交互”“挑战与突围”等章节,思考如何将报告中的技术框架与实践路径应用于实际风控体系的智能化升级。
2025-10-22 17:26:11 5.46MB 金融风控 风险决策 AI智能
1
猫狗分类图片 anomaly_data.csv apple_detect.ipynb chip_test.csv cnn.ipynb data.csv data_class_processed.csv data_class_raw.csv data_new.csv data_single.csv dog_test.jpg examdata.csv excel1.xlsx improve.ipynb iris.ipynb iris_data.csv kmeans.ipynb kmeans_data.csv logistic.ipynb LSTM_text.txt mlp.ipynb MLP_test_data.csv MLP_test_data.xlsx model1.m rnn.ipynb sport.ipynb T-R-test.csv T-R-train.csv test1.ipynb transfer_data.csv transfer_data.ipynb transfer_data2.csv Untitled.ipynb usa_house_predict.ipynb usa_housing_price.csv zgpa_predict_test.csv zgpa_test.csv zgpa_train.csv 寻找普通苹果与其他苹果.ipynb 迁移学习 二次函数拟合.ipynb
2025-10-22 13:34:07 149.93MB
1
本书深入探讨了多智能体系统在通信网络上的协同控制问题,重点介绍了最优和自适应设计方法。书中阐述了如何通过分布式协议确保所有智能体达成共识或同步,涵盖了一阶和二阶系统、队形控制及图拓ology的影响。此外,书中还探讨了最优控制和自适应控制在图上的实现,强调了局部和全局最优性之间的关系及其在实际应用中的挑战。通过实例和理论分析,本书为读者提供了理解和解决多智能体系统协同控制问题的全面指南。 多智能体系统的协同控制与优化设计是近年来系统控制领域的热点问题。智能体系统是由多个智能体组成的一个群体,每个智能体拥有一定程度的自治能力,通过相互之间的协调与合作来完成复杂的任务。在这一领域中,协同控制主要是指智能体之间如何通过分布式协议达成一致的行为,即达成共识或同步。优化设计则涉及如何构建最优的控制策略,使得系统的整体性能达到最佳。 本书深入探讨了多智能体系统在通信网络上的协同控制问题,重点介绍了最优和自适应设计方法。所谓最优设计,即是在给定性能指标下,寻找可以使系统性能最优化的控制策略。而自适应设计则是指系统能够在变化的环境或参数下,自动调整自身控制策略,以适应外部变化。 书中详细阐述了分布式协议如何确保所有智能体达成共识或同步,并且覆盖了不同类型的系统模型,例如一阶系统和二阶系统。队形控制和图拓扑的影响也是讨论的关键内容,因为它们直接关系到智能体如何在空间中有效地组织和协同工作。 此外,最优控制和自适应控制在图上的实现也被细致探讨。这涉及到如何将最优控制和自适应控制理论应用到多智能体系统的网络结构上,以及这些控制策略如何在局部和全局水平上影响系统的最优性。这些理论与实际应用中的挑战紧密相连,书中通过实例和理论分析,为读者提供了理解和解决多智能体系统协同控制问题的全面指南。 本书的作者们包括弗兰克·L·刘易斯(Frank L. Lewis)、张红伟(Hongwei Zhang)、克里斯蒂安·亨格斯特-莫夫里克(Kristian Hengster-Movric)和阿比吉特·达斯(Abhijit Das)。他们分别来自德克萨斯大学阿灵顿分校UTA研究所和西南交通大学电气工程学院、以及Danfoss Power Solutions(US)公司。该书由Springer出版,是通讯与控制工程系列的一部分。 在版权方面,本书受到国际版权法律的保护。出版社保留了包括翻译权、翻印权、插图使用、朗诵权、广播权、微缩复制或任何其他物理方式复制、传输或信息存储和检索、电子改编、计算机软件,或通过现在已知或今后开发出的类似或不相似方法的权利。但是,为了评论、学术分析或专门为在计算机系统中执行和使用的材料,可以简短摘录。 本书对于希望深入了解多智能体系统协同控制和优化设计的读者来说,是极具价值的参考资料。它不仅涵盖了理论的全面讨论,也提供了实际应用的案例分析,能够帮助读者在工程实践与理论研究中找到平衡点。
2025-10-22 12:20:33 21.49MB multi-agent systems control theory
1
本书系统介绍多智能体系统的控制理论与Python仿真,涵盖一致性、覆盖与编队控制等核心内容,并延伸至分布式优化与病毒传播建模。适合控制、计算机与工程领域研究生及研究人员,兼具理论深度与实践代码,助力快速掌握协同控制前沿。 多智能体系统由多个自主个体组成,这些个体能够协作执行复杂任务,如搜索、监视、探索和导航等。在多智能体系统中,个体间需要通过通信、感知和决策来协同工作,这要求每个智能体具有一定的智能水平和通信能力。多智能体系统的控制理论研究如何设计和分析智能体间的交互机制,以及如何通过这些机制实现高效的任务执行。 一致性问题关注的是系统中所有智能体能否达成并保持某种共识状态。在多智能体系统中,一致性算法使得一组初始状态不同的智能体能够通过局部信息交换和一定策略,最终在状态上达成一致。一致性控制广泛应用于机器人编队控制、分布式计算、传感器网络和无人机群控制等领域。 覆盖与编队控制是多智能体系统中的另一个重要研究方向。覆盖控制主要研究智能体如何分布于某个区域内以执行覆盖任务,例如环境监测、搜索救援等。而编队控制则关注智能体如何协同移动以形成特定的形状或队形。这些控制策略在多机器人系统、卫星编队控制、无人航空器编队飞行等领域具有重要应用。 分布式优化处理的是如何在多智能体系统中分散地解决优化问题。该问题要求智能体能够在缺乏全局信息的情况下,通过相互交流和协作,达成全局最优解或近似最优解。分布式优化方法在电力系统、交通管理、无线网络等领域都有实际应用。 病毒传播建模是研究传染病在人口群体中传播的数学模型,通过多智能体系统模型可以模拟不同个体间的相互作用及其对病毒传播的影响。这类模型有助于公共卫生政策制定者理解和预测疾病爆发趋势,从而采取有效的防控措施。 Python作为一种编程语言,在多智能体系统的仿真研究中具有重要作用。它的易学易用、丰富的库支持以及强大的数据处理能力,使得研究人员能够快速搭建仿真平台并实现复杂的控制策略。Python在多智能体仿真中广泛应用于算法的快速原型开发、结果可视化以及数据分析等环节。 本书提供的内容不仅深入浅出地介绍了多智能体系统的控制理论,还通过Python仿真实践,帮助读者更好地理解理论知识并掌握其应用。书中包含大量理论分析和代码实例,通过这些内容,读者可以学习到如何使用Python进行多智能体系统的仿真,进而进行分布式优化和病毒传播建模等复杂任务。 本书适合控制、计算机与工程领域的研究生及研究人员阅读。该书不仅提供了多智能体系统的基础知识,还包括了利用Python进行模拟实验的方法。书中内容覆盖了从基础理论到实际应用的多个方面,使读者能够在理解多智能体系统控制的基础上,结合编程实践,深入研究和开发新的控制策略。 书中的章节设计和内容编排旨在帮助学生和教师更有效地利用教材。教材系列注重理论与应用的结合,不仅提供了理论知识,还包含了丰富的辅助教学材料。这些材料通过网络获取,覆盖了从仿真文件到课堂投影的pdf幻灯片、供教师下载的习题解答pdf等多种形式。教师可以通过这些资源来辅助教学和评估学生的学习进度。 本书是一本内容全面、理论与实践相结合的专业教材,旨在为控制和计算机工程领域的学生和研究者提供多智能体系统控制领域的最新研究成果和仿真应用工具。通过阅读本书,读者能够获得丰富的理论知识,并通过Python编程实践加深理解,最终实现协同控制前沿技术的快速掌握。
2025-10-22 12:11:34 13.5MB 多智能体 Python 分布式控制
1
智能体协同控制技术,特别是无人车、无人机和无人船的编队控制与路径跟随。重点讲解了基于模型预测控制(MPC)的分布式编队协同控制方法及其在MATLAB和Simulink中的实现。文中还涉及路径规划的重要性和常用算法,如A*算法和Dijkstra算法。通过具体的MATLAB代码示例和Simulink建模,展示了如何实现高效的多智能体协同控制。 适合人群:对无人驾驶技术和多智能体系统感兴趣的科研人员、工程师及高校学生。 使用场景及目标:适用于研究和开发无人车、无人机、无人船的编队控制和路径规划项目,旨在提高多智能体系统的协同效率和性能。 其他说明:文章不仅提供了理论背景,还包括实用的代码示例和仿真工具介绍,有助于读者深入理解和实践相关技术。
2025-10-22 12:09:51 300KB
1
人工智能的基础数学
2025-10-22 09:38:30 14.87MB
1
文档支持目录章节跳转同时还支持阅读器左侧大纲显示和章节快速定位,文档内容完整、条理清晰。文档内所有文字、图表、函数、目录等元素均显示正常,无任何异常情况,敬请您放心查阅与使用。文档仅供学习参考,请勿用作商业用途。 从隐写术到编码转换,从音频隐写到文件结构分析,CTF-Misc 教会你用技术的眼睛发现数据中的「彩蛋」。掌握 Stegsolve、CyberChef、Audacity 等工具,合法破解摩斯密码、二维码、LSB 隐写,在虚拟战场中提升网络安全意识与技术能力。记住:所有技术仅用于学习与竞赛!
2025-10-21 20:25:49 4.94MB
1
内容概要:本文是一份关于基于BP神经网络的模式识别实验报告,详细介绍了BP神经网络的基本结构与原理,重点阐述了前向传播与反向传播算法的实现过程。通过构建包含输入层、隐含层和输出层的简化神经网络,利用“异或”真值表进行模型训练与验证,并进一步应用于小麦种子品种分类的实际案例。实验涵盖了数据预处理(如归一化)、网络初始化、激活函数选择(Sigmoid)、误差计算与权重更新等关键步骤,提供了完整的Python实现代码,并通过交叉验证评估模型性能,最终实现了较高的分类准确率。; 适合人群:具备一定编程基础和数学基础,正在学习人工智能、机器学习或神经网络相关课程的本科生或研究生,以及希望深入理解BP算法原理的初学者。; 使用场景及目标:①理解BP神经网络中前向传播与反向传播的核心机制;②掌握反向传播算法中的梯度计算与权重更新过程;③通过动手实现BP网络解决分类问题(如XOR逻辑判断与多类别模式识别);④学习数据预处理、模型训练与评估的基本流程。; 阅读建议:建议结合实验代码逐段调试,重点关注forward_propagate、backward_propagate_error和update_weights等核心函数的实现逻辑,注意训练与测试阶段数据归一化的一致性处理,以加深对BP算法整体流程的理解。
1
JK0006-3智能监控仪V2.1.doc
2025-10-21 10:21:48 521KB
1
普兰德酒店智能门锁V10未来之窗插件是普兰德酒店管理系列中的一个重要组件,它通过最新的技术手段,为酒店住宿行业提供了智能化、安全化和便捷化的解决方案。该插件能够与酒店管理系统无缝集成,通过一系列的软件和硬件结合,实现对酒店门锁的智能化控制。这种智能门锁系统不仅提高了酒店的运营效率,也为住客带来了更加舒适和便捷的住宿体验。 普兰德V10未来之窗智能门锁系统采用最新的物联网技术,通过无线网络连接,实现了远程管理与控制。酒店前台可以实时监控门锁状态,及时响应住客的开锁需求。同时,住客也可以通过手机APP、房间内的智能终端甚至语音助手等方式,实现远程开锁、授权临时密码等操作,极大地方便了住客。 普兰德V10智能门锁的安全性得到了极大提升。它通常配备有高安全性的加密算法,确保每一次开锁的信号传输都是安全的,防止未经授权的访问。此外,门锁还具备防撬、防破坏功能,一旦遭遇非法入侵,系统会自动报警,确保住客和酒店财产的安全。 智能门锁V10未来之窗还提供了灵活性极高的权限管理功能。酒店可以根据住客的身份信息、入住时间等条件设定门锁权限,实现对门锁的精细化管理。例如,为清洁员分配临时权限,让其只在特定时间内能够进入特定房间进行清洁工作。这种权限管理能够大幅提高酒店的安全管理水平和服务效率。 除此之外,普兰德V10智能门锁还具有节能环保的特点。它能够自动感应住客是否在房间内,当房间长时间无人员活动时,系统会自动关闭电源,减少不必要的电力消耗。同时,智能门锁在设计上也考虑到了节能的因素,例如使用低功耗的电子元件和电池,既保证了设备的稳定运行,又降低了能源消耗。 智能门锁V10未来之窗插件作为酒店智能化的重要组成部分,其便捷、安全和节能的特点,使其成为了现代酒店业提升服务质量和管理水平的得力助手。随着智能科技的不断发展和酒店业对高效管理需求的日益增长,普兰德V10智能门锁未来之窗插件在未来酒店行业中将扮演更加重要的角色。
2025-10-20 23:54:52 1.3MB 智能门锁
1