针对奇异值分解信号降噪方法中吸引子轨迹矩阵(Hankel矩阵)结构的确定,以及有效奇异值的选择两个关键问题,提出了一种基于遗传算法的奇异值分解信号去噪算法。首先,利用原始信号构造Hankel矩阵,运用遗传算法对矩阵结构进行优化,然后对含噪声信息的矩阵进行奇异值分解,最后通过K-medoids聚类算法确定有效奇异值个数,对有效奇异值和其对应的向量进行奇异值分解反变换,还原原始信号,达到去噪目的。通过仿真实验并与小波包变换、小波变换以及传统快速傅氏变换(FFT)去噪方法相比较,结果表明该算法具有良好的去噪效果。
1
k均值聚类算法(k-means clustering algorithm)是一种迭代求解的聚类分析算法,其步骤是,预将数据分为K组,则随机选取K个对象作为初始的聚类中心,然后计算每个对象与各个种子聚类中心之间的距离,把每个对象分配给距离它最近的聚类中心。聚类中心以及分配给它们的对象就代表一个聚类。每分配一个样本,聚类的聚类中心会根据聚类中现有的对象被重新计算。这个过程将不断重复直到满足某个终止条件。终止条件可以是没有(或最小数目)对象被重新分配给不同的聚类,没有(或最小数目)聚类中心再发生变化,误差平方和局部最小
2022-12-02 20:40:54 2KB matlab
1
可以运行,采用python3.6,希望可以帮助到更多的人!
2022-12-01 17:10:43 12KB 聚类算法 CFSFDP FDP
1
为了改进模糊C均值聚类(FCM)算法对初始聚类中心敏感、抗噪性能较差、运算量大的问题,提出一种新的基于蚁群和自适应滤波的模糊聚类图像分割方法(ACOAFCM)。首先,该方法利用改进的蚁群算法确定初始聚类中心,作为FCM初始参数,克服FCM算法对初始聚类中心的敏感;其次,采用自适应中值滤波抑制图像噪声干扰,增强算法的鲁棒性;最后,用直方图特征空间优化FCM目标函数,对图像进行分割,减少运算量。实验结果表明,该方法克服了FCM算法对初始聚类中心的依赖,抗噪能力强,收敛速度快,分割精度高。
1
k-means聚类算法
2022-11-29 14:32:15 4KB python
1
FCM算法是一种基于划分的聚类算法,它的思想就是使得被划分到同一簇的对象之间相似度最大,而不同簇之间的相似度最小。模糊C均值算法是普通C均值算法的改进,普通C均值算法对于数据的划分是硬性的,而FCM则是一种柔性的模糊划分。在介绍FCM具体算法之前我们先介绍一些模糊集合的基本知识。
2022-11-25 10:47:46 45KB FCM算法介绍
1
快速mex K-means聚类算法,可进行K-mean ++初始化 (mex-interface 修改自原始 yael 包 https://gforge.inria.fr/projects/yael) - 接受单/双精度输入 - 支持 BLAS/OpenMP 进行多核计算 请运行 mexme_kmeans.m 来编译 mex 文件(确保已经完成了 mex -setup 至少一个) 运行演示“test_yael_kmeans.m”
2022-11-22 17:15:08 1.42MB matlab
1
利用Python来对客户信息进行分析,对客户群体进行分类,分析预测客户的潜在消费行为,对客户进行价值评估,在自己的客户群体中挖掘出特有的潜在客户。 在分析的过程中,会使用到的技术有Numpy和Pandas,对数据进行清洗和预处理,以及存储数据;机器学习库Scikit-learn,对客户价值进行K-Means聚类算法分析,将客户群体进行划分;绘图库Matplotlib,将聚类结果可视化,直观地展现结果。
2022-11-21 20:25:44 4.71MB RFM 算法 数据分析 python
1
基于K-means(K均值)聚类算法的图像特征分割研究.m
2022-11-20 20:21:21 366B K-means聚类算法
1
无监督学习中用于数据分类的算法,包括原始数据。
2022-11-19 10:25:00 3KB matlab 无监督学习 聚类
1