kmeans聚类算法是一种迭代求解的聚类分析算法。其实现步骤如下: (1) 随机选取K个对象作为初始的聚类中心 (2) 计算每个对象与各个种子聚类中心之间的距离,把每个对象分配给距离它最近的聚类中心。 (3) 聚类中心以及分配给它们的对象就代表一个聚类。每分配一个样本,聚类的聚类中心会根据聚类中现有的对象被重新计算。 (4) 重复步骤2、3直到满足某个终止条件。终止条件可以是聚类中心再发生变化或者误差平方和局部最小等。 此代码可直接运行,在此基础上进行二次开发任务!
2023-03-07 20:37:09 2KB matlab kmeans聚类算法
1
The code of Local Gravitation Clustering, see in the paper "Clustering by Local Gravitation " http://ieeexplore.ieee.org/document/7915751 citation: Z. Wang et al., "Clustering by Local Gravitation," in IEEE Transactions on Cybernetics, vol. 48, no. 5, pp. 1383-1396, May 2018. For Chinese readers who visit this page from my dissertation: 我的毕业论文的知网CAJ格式中很多图表显示有问题, 可能的原因是知网的CAJ格式对矢量图的支持不好, 而我提交的pdf版
2023-03-02 10:08:11 5KB matlab
1
对聚类算法的简单总结。聚类分析的算法可以分为划分法(Partitioning Methods)、层次法(Hierarchical Methods)、基于密度的方法(density-based methods)、基于网格的方法(grid-based methods)、基于模型的方法(Model-Based Methods)。
2023-03-01 20:27:59 19KB 聚类
1
k-means聚类算法及matlab代码贝叶斯非参数小方差渐近聚类 这是贝叶斯非参数小方差渐近聚类算法库:DP均值,动态均值,DP-vMF均值,DDP-vMF均值。 出于比较原因,该库还实现了k均值和球形k均值。 该库带有一个可执行文件,该可执行文件允许使用DP-vMF-means,DP-means,球形k-means和k-means进行批量聚类。 示出了算法的简单性。 有关使用DDP-vMF-means的示例,请参考,该文档依赖于此程序包的dpMMlowVar库使用DDP-vMF-means从Kinect RGB-D流执行实时方向分割。 如果您使用DP-vMF手段或DDP-vMF手段,请引用: Julian Straub, Trevor Campbell, Jonathan P. How, John W. Fisher III. "Small-Variance Nonparametric Clustering on the Hypersphere", In CVPR, 2015. 如果您使用动态均值,请引用: T. Campbell, M. Liu, B. Kulis, J. How
2023-02-27 22:55:23 2.59MB 系统开源
1
图像压缩矢量量化 使用随机初始化对聚类中心进行图像压缩的 k-means 的实现
2023-02-27 22:16:07 202KB MATLAB
1
在Python中使用K-Means聚类和PCA主成分分析进行图像压缩 各位读者好,在这片文章中我们尝试使用sklearn库比较k-means聚类算法和主成分分析(PCA)在图像压缩上的实现和结果。 压缩图像的效果通过占用的减少比例以及和原始图像的差异大小来评估。 图像压缩的目的是在保持与原始图像的相似性的同时,使图像占用的空间尽可能地减小,这由图像的差异百分比表示。 图像压缩需要几个Python库,如下所示: # image processing from PIL import Image from io import BytesIO import webcolors # data analy
2023-02-27 22:15:11 267KB ns 主成分分析 聚类
1
用Go语言编写的kmeans k均值聚类算法实现它做了什么k-means聚类将多维数据集划分为k个聚类,其中每个数据点均属于用m个最近的kmeans k-means聚类算法实现的聚类k-均值聚类的作用将多维数据集划分为k个聚类,其中每个数据点均以最接近的均值属于聚类,用作聚类的原型。 我什么时候应该使用它? 当您拥有数字,多维数据集时,就没有数据标签了。您确切知道要将数据划分为Example导入的几个集群(“ github.com/muesli/kmeans”
2023-02-27 16:49:36 3.66MB Golang Data Structures
1
一种基于线路轨迹的公交站点聚类算法,王进,,随着移动互联网和手机定位技术的发展,出现了越来越多的基于地理位置的服务(LBS),地图数据和公共交通数据是这些应用和服务的数据基
2023-02-22 19:44:29 312KB 数据挖掘
1
将二部图模型引入聚类集成问题中,使用二部图模型同时建模对象集和超边集,充分挖掘潜藏在对象之间的相似度信息和超边提供的属性信息.设计正则化谱聚类算法解决二部图划分问题,在低维嵌入空间运行K-means++算法划分对象集,获得最终的聚类结果.在多组基准数据集上进行实验,实验结果表明所提出方法不仅能获得优越的结果,而且具有较高的运行效率.
1
针对K-means算法易受随机选择的初始聚类中心的影响和划分准确率不高的缺点,给出了一种改进的K-means算法。首先对初始聚类中心的选择过程进行了改进,然后对各样本点间差异最大的维进行加权处理。在Iris数据集上对原始算法和改进后的K-means算法的聚类结果进行对比分析。实验证明:改进后的算法稳定,且聚类的准确率达到了92%。
2023-02-10 03:10:05 932KB 自然科学 论文
1