CIS 519/419 最终项目的基于强化学习的俄罗斯方块播放器。
2021-12-31 14:13:19 15KB Python
1
强化学习入门的作业
2021-12-29 15:06:28 10KB RL
1
强化学习入门的作业
2021-12-29 15:06:28 10KB RL
1
rl入门作业
2021-12-29 15:06:27 105KB RL
1
RL拟人化小球化剂(PPO) 说明即将推出...
2021-12-28 11:03:35 1.1MB Python
1
A practical guide to mastering reinforcement learning algorithms using Keras Key Features: Build projects across robotics, gaming, and finance fields, putting reinforcement learning (RL) into action; Get to grips with Keras and practice on real-world unstructured datasets; Uncover advanced deep learning algorithms such as Monte Carlo, Markov Decision, and Q-learning.
2021-12-26 15:48:39 17.95MB Keras 强化学习 RL Reinforcement
1
多臂赌博机介绍 强化学习入门 Reinforcement Learning
2021-12-23 10:20:44 1.83MB 多臂赌博机 强化学习 RL Reinforcement
1
GridWorld(计划和强化学习) 包含用于规划的算法:策略迭代和价值迭代。 还包含强化学习算法:蒙特卡洛学习,Sarsa(lambda)和Q学习。 在GridWorld问题的上下文中使用这些方法,在该问题中,代理的目标是找到到达终端状态的最快路径。 game.py文件包含Grid World环境。 可以运行其他文件来执行强化学习或计划(取决于所选文件)。
2021-12-22 11:53:22 7KB Python
1
频率解析Matlab代码基于RNN的强化学习框架,可确保稳定的最佳频率 该存储库包含重现以下论文中显示的结果所必需的源代码: 作者:崔文琦和张宝森 华盛顿大学 动机 除了传统的线性下垂控制器以外,基于逆变器的资源的渗透率的提高还为我们提供了电力系统频率调节方面的更多灵活性。 由于具有快速的电源电子接口,与线性控制器相比,基于逆变器的资源可用于实现复杂的控制功能,并可能在性能上带来较大的收益。 通过将参数化为神经网络来发现这些非线性控制器,强化学习已成为一种流行的方法。 基于学习的方法面临的主要挑战是,很难对学习到的控制器强制执行稳定性约束。 另外,电力系统的时间耦合动力学将大大减慢神经网络的训练。 在本文中,我们建议对基于神经网络的控制器的结构进行显式设计,以确保所有拓扑和参数的系统稳定性。 这可以通过使用Lyapunov函数来指导其结构来完成。 基于递归神经网络的强化学习架构用于有效地训练控制器的权重。 最终的控制器仅使用本地信息并优于线性下降,以及仅通过使用强化学习而学习到的策略。 从提出的框架中学到的灵活的非线性控制器 在这里,我们展示了与线性下降控制相比,神经网络控制器的作用
2021-12-21 14:01:34 1022KB 系统开源
1
本文转自『深度强化学习实验室』 NeurIPS(前称NIPS)可谓人工智能年度最大盛会。每年全球的人工智能爱好者和科学家都会在这里聚集,发布最新研究,并进行热烈探讨,大会的技术往往这未来几年就会演变成真正的研究甚至应用成果。NIPS2019大会将在12月8日-14日在加拿大温哥华举行,据官方统计消息,NeurIPS今年共收到投稿6743篇,再次打破了历年来的接收记录。其中接收论文1429篇。论文发表机构统计 Google共179篇 其中Deepmind-53篇 Google-Brain-Research-126篇  NVIDIA上榜9篇 斯坦福上榜79篇 MIT上榜77篇 卡耐基梅隆上榜75篇
2021-12-15 22:51:00 1.13MB rl 代理模式 优化策略
1