随着大数据和人工智能的发展, 将人工处理专利的方式转换为自动化处理成为可能. 本文结合卷积神经网络(CNN)提取局部特征和双向长短记忆神经网络(BiLSTM)序列化提取全局特征的优势, 在BiLSTM隐藏层引入注意力机制(Attention机制), 提出了针对中文专利文本数据的BiLSTM_ATT_CNN组合模型. 通过设计多组对比实验, 验证了BiLSTM_ATT_CNN组合模型提升了中文专利文本分类的准确率.
1
深度卷积神经网络特征提取的数学理论 . pdf
2021-12-15 10:16:17 459KB cnn
1
CNN-Numpy-实施 手动实现卷积神经网络,而无需使用诸如pytorch和tensorflow之类的现代库。 换句话说,我从头开始构建了一个神经网络,其中涉及实现正向和反向传播。 我手动编写了反向传播代码,并使用numpy手动实现了每一层的偏导数。 我在这里使用的方程式示例可以在这里找到。 E.Bendersky(2016年10月28日)。 Softmax函数及其导数。 取自 我最完善,最成功的网络是跟踪多个功能的多元回归CNN。 它可以正确确定两个图像之间的形状数量差异以及是否存在反射,但是在测量旋转度和形状之间的填充颜色差异方面存在困难。 为了训练该网络,我必须生成自己的数据集。 项目描述 AI研究人员已将Raven的渐进矩阵(RPM)视觉智商测试用作开发新策略,算法和认知代理的测试平台。 通过构建可以逐步解决更棘手问题的智能体,研究人员希望推动人工智能领域的发展。 下面显示了
2021-12-14 20:47:49 307.08MB
1
中文 | Chinese-number-gestures-recognition Chinese number gestures recognition app(数字手势识别APP,识别0-10) 基于卷积神经网络的数字手势识别APP(安卓) 1、项目简介 这是一个基于卷积神经网络的数字手势识别APP(安卓),主要功能为:通过手机摄像头识别做出的数字手势,能够识别数字0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 对应的手势。 Chinese-number-gestures-recognition项目下包含两块代码:1. DigitalGestureRecognition为安卓APP代码;2. digital_gesture_recognition为PC端处理数据及训练模型代码,编程语言为python。 开发环境: PC端:python3.6, TensorFlow-gp
2021-12-14 12:46:43 147.39MB Java
1
Sentiment_Analysis_Deep_Learning:使用深度学习(CNN)进行情感分析
2021-12-14 00:45:40 21.69MB JupyterNotebook
1
本文提出了一种学习深度卷积神经网络(CNN)中可解释卷积滤波器的通用方法,用于对象分类,每个可解释滤波器都对一个特定对象部分的特征进行编码。我们的方法不需要额外的注释对象部分或纹理的监督。相反,我们使用与传统CNNs相同的训练数据。在学习过程中,我们的方法在一个高卷积层中自动分配每个可解释的过滤器,每个过滤器的对象都是某个类别的一部分。
2021-12-13 12:28:03 8.14MB 可解释CNN的对象分类
1
matlab的egde源代码神经网络 mdCNN是MATLAB工具箱,可为2D和3D输入实现卷积神经网络(CNN)。 网络是多维的,内核是3D的,卷积是3D的。 它适用于诸如CT / MRI的体积输入,但也可以支持1D / 2D图像输入。 该框架支持所有主要功能,例如droput,padding,stride,max pooling,L2正则化,动量,交叉熵/ MSE,softmax,回归,分类和批处理归一化层。 框架是完全用matlab编写的,并进行了重大优化。 在培训或测试期间,所有的CPU内核都通过使用Matlab内置多线程技术参与其中。 对于网络,有几个示例被预先配置为运行MNIST,CIFAR10、1D CNN,用于MNIST图像的自动编码器和3dMNIST-MNIST数据集到3D卷的特殊增强。 MNIST演示在几分钟内达到99.2%,CIFAR10演示达到约80% 我在一个用于在3D CT图像中对椎骨进行分类的项目中使用了此框架。 = = = = = = = = = = = = = = = = = = = = 运行MNIST演示:进入文件夹“ Demo / MNIST”,运
2021-12-13 11:30:40 99KB 系统开源
1
视觉常识R-CNN(VC R-CNN) [NEW]:我们提供了VC R-CNN的培训代码和详细的自述文件。 :glowing_star: [NEW]:提供了在MSCOCO上预训练的VC功能。 试试看! :glowing_star: 该存储库包含官方的PyTorch实施和为论文“ ”提议的VC功能。 有关技术细节,请参阅: 视觉常识R-CNN ,王建强黄,,IEEE 2020年计算机视觉和模式识别会议(CVPR) 关键词:因果干预; 视觉常识; 表征学习[] , [] , [ ] , [ ] 比比克斯 如果您发现我们的VC功能和代码有帮助,请考虑引用以下内容: @inproceedings{wang2020visual, title={Visual commonsense r-cnn}, author={Wang, Tan and Huang, Jianqiang and Zhang, Hanwang and Sun,
2021-12-13 10:09:42 2.68MB Python
1
用Tensorflow搭建CNN卷积神经网络,实现MNIST手写数字识别-附件资源
2021-12-13 09:19:36 106B
1
对于想要学习深度学习神经网络编程的童鞋们,最开始想迈出第一步的心情往往是恐惧的,焦虑的,而要是有一段可以让你快速读懂的代码,那绝对会让你安心开心的飞起来,它就是这样的“引路人”!
2021-12-12 21:11:42 970KB CNN 深度学习 神经网络
1