研究生医学图像处理数据,医学相关的,全身上下分类分割都有
2024-09-06 15:20:34 224B 图像处理 数据集
1
该交通数据来源于PeMS网站,包含圣贝纳迪诺市(美国加利福尼亚州南部一座城市)8条高速公路1979个探测器,2016年7月1日至2016年8月31日这2个月的数据。这些传感器每5分钟收一次数据,包含1979个所有的传感器每5分钟经过的车辆数。 数据 节点 特征数 时长 时间窗口 PeMSD8 107 3 61天 5min 此外本数据还包含一个3*107的邻接矩阵文件,该数据表示了107个路口之间的相邻情况(即连通性) 以及节点之间的距离。 可用于交通流量预测、交通速度预测、交通拥堵情况预测、交通信号灯绿信比条件、时间序列分析、时空序列分析
2024-09-04 22:13:20 17.45MB 数据集 数据挖掘 交通预测 深度学习
1
该交通数据来源于PeMS网站,包含旧金山湾区(美国加尼福尼亚州旧金山大湾区)29条高速公路3848个探测器,2018年1月1日至2018年2月28日这2个月的数据。这些传感器每5分钟收一次数据,包含3848个所有的传感器每5分钟经过的车辆数。 数据 节点 特征数 时长 时间窗口 PeMSD4 307 3 59天 5min 此外本数据还包含一个307*307的邻接矩阵文件,该数据表示了307个路口之间的相邻情况(即连通性) 以及节点之间的距离。 可用于交通流量预测、交通速度预测、交通拥堵情况预测、交通信号灯绿信比条件、时间序列分析、时空序列分析
2024-09-04 22:12:25 31.14MB 数据集 数据挖掘 交通预测 深度学习
1
在这个名为“心脏病发作预测数据”的资源中,我们聚焦于利用数据科学和机器学习方法来预测心脏疾病的发生。数据包含303个样本,这些样本代表了不同的心脏病患者,目的是通过分析一系列的患者特征来预测他们是否可能会发生心脏病发作。下面将详细介绍这个数据的关键知识点以及可能涉及的相关技术。 1. **数据构成**: 数据由14个属性组成,每个属性代表患者的一个特定特征,例如: - **年龄**:年龄是心脏病风险的重要因素,通常随着年龄的增长,心脏病的风险会增加。 - **性别**:男性通常比女性有更高的心脏病发病率。 - **胸痛类型**:胸痛的性质和严重程度可能预示着不同类型的心脏问题。 - 其他可能的属性包括血压、胆固醇水平、血糖水平、吸烟状况、家族病史等,这些都对心脏健康有着直接影响。 2. **数据分析**: 在开始预测模型构建之前,数据分析师会进行数据探索,包括计算统计量、绘制图表和进行相关性分析,以理解各特征之间的关系和它们与心脏病发作的关联。 3. **特征工程**: 特征工程是机器学习过程中的关键步骤,可能涉及对原始数据进行转换、创建新的特征或处理缺失值。例如,将性别转换为二元变量(男性=1,女性=0),或者对连续数值进行标准化或归一化。 4. **模型选择**: 对于心脏病发作预测,可以使用多种机器学习模型,如逻辑回归、决策树、随机森林、支持向量机、神经网络等。每种模型都有其优缺点,需要根据数据特性和预测需求来选择。 5. **训练与验证**: 数据会被划分为训练和测试,训练用于训练模型,而测试用于评估模型的泛化能力。交叉验证也是评估模型性能的常用方法,它可以提供更稳定的结果。 6. **模型评估**: 常用的评估指标包括准确率、精确率、召回率、F1分数以及ROC曲线。对于不平衡数据(如心脏病数据,正常人少于患者),AUC-ROC和查准率-查全率曲线可能更为重要。 7. **模型调优**: 通过调整模型参数(如决策树的深度、SVM的C和γ参数等)或使用网格搜索、随机搜索等方法优化模型性能。 8. **预测与解释**: 最终模型可以用来预测新个体的心脏病发作风险,并为医生和患者提供预防建议。同时,模型解释性也很重要,比如通过特征重要性了解哪些因素对预测结果影响最大。 这个数据为心脏病研究提供了宝贵素材,有助于研究人员和数据科学家开发更精准的预测模型,从而改善医疗诊断和预后。通过对这些数据的深入挖掘,我们可以更好地理解心脏病的发病机制,为预防和治疗提供科学依据。
2024-09-04 14:11:47 4KB 数据集 机器学习 数据分析
1
在图像处理领域,图像融合是一项关键技术,它涉及将多个源图像的信息有效地整合在一起,以创建一个包含更多细节和更全面信息的新图像。本资源提供的压缩包"图像融合领域常用的测试(已配准 可直接使用)"显然是为了支持研究人员和开发者在图像融合算法的开发与评估中使用。下面我们将详细探讨图像融合、配准以及测试的重要性。 图像融合是通过结合来自不同传感器、不同时间或不同视角的多张图像,提取各自的优势,生成一个综合图像的过程。这种技术广泛应用于遥感、医学成像、计算机视觉等多个领域。例如,在遥感中,可见光图像和红外图像的融合可以提供更丰富的地表信息;在医学成像中,MRI和CT图像的融合有助于医生更准确地定位病变位置。 “已配准”是这个测试的一个关键特性。图像配准是指将多张图像对齐,使其具有相同的几何结构。在图像融合中,配准至关重要,因为如果不进行配准,图像的对应部分可能不匹配,导致融合结果失真。配准方法包括基于特征的配准、基于区域的配准和基于变换模型的配准等,选择哪种方法取决于图像的特性和应用场景。 测试在图像融合研究中起着决定性作用。一个良好的测试应包含各种场景、条件和类型的图像,以便评估融合算法的性能。这些测试通常会提供不同分辨率、不同光照条件、不同角度和不同传感器获取的图像对。在这个“MIX”压缩包中,我们可以期待找到这样的多样化图像合,它可以帮助开发者测试其融合算法在不同情况下的表现,从而优化算法并提高其泛化能力。 对于测试的评价,通常使用一些客观指标,如互信息、均方误差(MSE)、结构相似度指数(SSIM)等。这些指标可以帮助量化融合结果的质量,比如对比度、清晰度、保真度等方面。同时,主观评价也是重要的,通过视觉检查来评估融合图像是否自然、是否有信息损失等。 这个“图像融合领域常用的测试(已配准 可直接使用)”为研究者和开发者提供了一个宝贵的资源,可以加速图像融合技术的发展和改进。使用这个测试,他们能够便捷地验证和比较不同融合算法的效果,推动图像处理技术的进步。在实际应用中,优秀的图像融合技术不仅可以提升数据的解释性和分析的准确性,还能为各种领域的决策提供强有力的支持。
2024-09-04 13:46:17 4.16MB 图像处理
1
基于火龙果数据的作物生长趋势项目,通过学习,如何将你构建的AI服务部署到云端上,实现具备识别火龙果生长趋势的云服务能力。下面是我们做的任务案例: 任务1:火龙果训练数据准备(使用精灵标注助手进行目标检测图像标注、将训练与验证数据转tfrecord格式数据) 任务2:目标检测模型搭建与训练(认识目标检测、 YOLOv3目标检测模型、 tensorflow YOLOv3模型训练) 任务3:生长趋势模型推理与模型评估(作物生长趋势模型推理接口、 作物生长趋势模型推理代码实现、作物生长趋势模型精度评估) 任务4:生长趋势AI模型服务封装( Restfull API、Flask环境搭建、Flask实现火龙果生长趋势AI服务) 任务5:模型云端部署与安装(生长趋势AI服务运行环境配置、编写自动化安装脚本实现服务一键安装与拉起)
2024-09-04 10:17:39 328.01MB tensorflow 人工智能 数据集 目标检测
1
汇编语言指令合,适合汇编入门学习使用,放在电脑里随时查阅
2024-09-03 14:03:56 135KB 汇编
1
《CamVid 数据在语义分割中的应用与解析》 语义分割是计算机视觉领域的一个重要任务,它涉及到图像中像素级别的分类,旨在将图像分成多个有意义的区域或对象。CamVid 数据,全称为Cambridge-driving Labeled Video Database,是用于此目的的一个知名数据,尤其适用于评估和训练语义分割模型。这个数据因其丰富的场景内容和详细的标注,为研究人员提供了一个理想的平台,以便测试和比较他们的网络架构在实际应用中的性能。 CamVid 数据源于剑桥城的实际驾驶视频,包含701个视频帧,这些帧被捕捉自不同的时间、天气和光照条件,确保了模型在多样化环境下的泛化能力。数据提供了32类不同的语义标签,包括道路、行人、汽车、自行车等,这些标签覆盖了城市环境中常见的物体和场景元素,使得模型能够学习到更为复杂的视觉模式。 使用CamVid数据进行语义分割训练时,首先需要对数据进行预处理,包括解压、图像尺寸标准化以及标签映射。数据中的每个图像都被标记为不同的类别,这些标签通常以灰度图像的形式存在,其中每个像素值对应一个特定的类别。这种标注方式使得模型可以直接学习像素级别的分类任务。 在模型选择方面,近年来流行的深度学习方法,如卷积神经网络(CNNs)和U-Net结构,已经证明在处理语义分割问题上非常有效。尤其是U-Net,其结合了卷积层的特征提取能力和反卷积层的细节恢复,使得模型在保持较高精度的同时,还能生成精细的分割结果。在CamVid上的实验通常会采用预训练的权重来初始化网络,以加速训练过程并提高收敛速度。 评估模型性能时,常用的指标有像素准确率(Pixel Accuracy)、类平均IoU(Mean Intersection over Union)等。像素准确率简单地计算了正确分类的像素占总像素的比例,而类平均IoU则考虑了每个类别的IoU,更能反映模型在各个类别上的表现均衡性。通过对这些指标的分析,我们可以了解模型在不同类别上的强项和弱点,从而进行针对性的优化。 在实际应用中,CamVid数据不仅有助于评估模型性能,还为自动驾驶、智能交通系统等领域提供了宝贵的数据资源。通过在CamVid上训练的模型,可以实现车辆检测、道路分割等功能,对于提升无人驾驶的安全性和效率具有重要意义。 CamVid数据以其全面的标注和多样化的场景,成为了语义分割研究中不可或缺的一部分。通过深入理解和应用这个数据,我们可以不断优化和改进模型,推动计算机视觉技术在实际生活中的广泛应用。
2024-09-02 18:35:25 178.3MB 数据集
1
【标题】:“入侵检测数据CICIDS2018第二个文件” 【正文】: 入侵检测系统(Intrusion Detection System, IDS)是网络安全的重要组成部分,它能够监控网络或系统活动,识别潜在的攻击和异常行为。CICIDS2018数据是用于入侵检测研究的一个广泛使用的数据,由加拿大通信研究中心(Communications Research Centre, CRC)发布。这个数据包含了各种真实的网络流量,包括正常流量以及不同类型的攻击流量,旨在为研究人员提供一个全面且多样化的测试平台。 “02-20-2018.csv”是CICIDS2018数据中的一天数据,由于原始文件体积过大,被分割成多个部分进行上传。每个CSV文件包含了这一天内的网络流量记录,每条记录通常包括了多个特征,这些特征可能有以下几类: 1. **时间戳**:事件发生的具体时间,用于分析流量模式和攻击时间分布。 2. **源IP地址(Src IP)**和**目标IP地址(Dst IP)**:分别代表数据包发送方和接收方的IP地址,可用来识别攻击源和受害目标。 3. **源端口(Src Port)**和**目标端口(Dst Port)**:网络连接的通信端口,有助于识别特定服务或协议。 4. **协议类型(Protocol)**:如TCP、UDP、ICMP等,不同协议可能对应不同的攻击方式。 5. **字节(Bytes)**和**数据包(Packets)**:记录了通信过程中传输的数据量和数据包数量。 6. **持续时间(Duration)**:从连接建立到结束的时间长度,可以反映出正常会话和异常行为的区别。 7. **服务(Service)**:根据端口号识别出的网络服务,如HTTP、FTP等。 8. **旗标(Flags)**:TCP旗标字段,如SYN、ACK、FIN等,有助于识别连接状态和可能的攻击。 9. **TCP序列号(TcpSeq)**和**TCP确认号(TcpAck)**:TCP连接中的序列号和确认号,可能在某些攻击中被利用。 10. **TCP窗口大小(TcpWin)**:表明接收方能接收的数据量,异常值可能暗示攻击行为。 11. **ICMP代码(IcmpCode)**:对于使用ICMP协议的流量,此字段表示ICMP消息的子类型。 12. **ICMP类型(IcmpType)**:ICMP消息的类型,如回显请求、回显应答等。 13. **信息(Info)**:提供关于网络流量的附加信息,如HTTP方法(GET、POST等)。 14. **标签(Label)**:最重要的是,这个数据中的每个记录都有一个标签,标明了流量是正常还是属于某种攻击类型,如DoS(拒绝服务)、DDoS(分布式拒绝服务)、Web攻击等。 通过对这些特征的分析,研究人员可以训练和评估入侵检测算法的性能,如基于机器学习的分类器。这些算法需要能够正确区分正常流量和攻击流量,以便在实际环境中有效应对网络安全威胁。同时,CICIDS2018数据的复杂性和多样性使得它成为评估新IDS技术的有效工具,推动了网络安全领域的研究进展。
2024-08-31 10:35:18 652.88MB 数据集
1
在测试入侵检测模型时,看到好多论文用到了CICIDS系列的数据,但是我当时没有下载成功,很麻烦还要自己搞AWS,然后在下载,作为一个计算机的菜鸡,实在没有下载成功。因此就掏钱下载了一个博主分享的数据。虽然目前还没有用上,但是想分享出来。对于学生来说,整这么复杂的东西着实做不来,既然我有了,那就免费分享吧。由于上传文件大小有限制,因此分了两篇文章发布,不过个人认为这个文件也足够了。不知道平台会怎样界定下载积分设置,如果后期有积分限制的话,可以私信我或者评论区留下你的联系方式,我很乐意与你面费分享。最后希望这个数据资源对你有用,有用的话就给我点个赞吧❀。
2024-08-31 10:31:10 440.67MB 数据集
1