泊车路径跟踪研究:垂直泊车纯跟踪算法与MPC-Carsim联合仿真方案(附文档分析、代码及环境设置),泊车路径跟踪研究:垂直泊车算法与MPC+Carsim联合仿真实战解析(matlab+Simulink),单步泊车技术深入探索,泊车路径跟踪 垂直泊车 纯跟踪算法 MPC pursuit carsim 联合仿真 单步垂直泊车离散点信息 利用纯跟踪算法进行泊车路径的跟踪 包含matlab单独的跟踪仿真 和 simulink-carsim联合仿真(可根据自身需求更路径信息) 所有资料均包括: 1、相关问题的文档分析 2、matlab 代码及相关注释 3、simulink为2020B以上、carsim为2019 4、carsim包含泊车环境设置 ,泊车路径跟踪; 垂直泊车; 纯跟踪算法; MPC; pursuit carsim 联合仿真; 单步垂直泊车离散点信息; MATLAB 仿真; Simulink-Carsim 环境设置。,基于MPC的垂直泊车路径跟踪与联合仿真研究
2025-05-14 15:53:59 3.3MB xbox
1
ISAC_4D_IMaging 基于 Matlab 编写的 MUSIC 算法的毫米波 OFDM 信号的 4D ISAC 成像仿真 基于深度学习的多节点 ISAC 4D 环境重构与上下行协同 文档结构 2D_FFT+2D_MUSCI ref_ofdm_imaging_2DFFT_2DMUSIC.m (主要功能) qamxxx.m & demoduqamxxx.m (调制和解调) xxxx_CFAR.m(CFAR 检测) environment_SE.m (散射体模拟的简化版本) environment.m (散射体模拟) environment_disp.m (显示环境模拟) goldseq.m & m_generate.m (序列生成) rcoswindow.m(OFDM 窗口算法) 4D_FFT ref_ofdm_imaging_4DFFT.m (主要功能) qamxxx.m & demoduqamxxx.m (调制和解调) xxxx_CFAR.m(CFAR 检测) environment_SE.m (散射体模拟的简化版本) environment.m (散射体模拟) environ
2025-05-14 15:50:54 6.04MB matlab
1
朴素贝叶斯分类器可以应用于岩性识别.该算法常使用高斯分布来拟合连续属性的概率分布,但是对于复杂的测井数据,高斯分布的拟合效果欠佳.针对该问题,提出基于EM算法的混合高斯概率密度估计.实验选取苏东41-33区块下古气井的测井数据作为训练样本,并选取44-45号井数据作为测试样本.实验采用基于EM算法的混合高斯模型来对测井数据变量进行概率密度估计,并将其应用到朴素贝叶斯分类器中进行岩性识别,最后用高斯分布函数的拟合效果作为对比.结果表明混合高斯模型具有更好的拟合效果,对于朴素贝叶斯分类器进行岩性识别的性能有不错的提升.
1
《验证码识别系统Python》,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Django框架,开发网页端操作平台,实现用户上传一张图片识别其名称
2025-05-14 15:32:44 2KB 深度学习
1
网络安全_卷积神经网络_乘法注意力机制_深度学习_入侵检测算法_特征提取_模型优化_基于KDD99和UNSW-NB15数据集_网络流量分析_异常行为识别_多分类任务_机器学习_数据.zip
2025-05-14 12:34:34 1.04MB
1
蜣螂优化算法(dung beetle optimizer,DBO)是JiankaXue 和Bo Shen 在2022 年提出的一种新型群体智能优化算法[1],其灵感来自于蜣螂的滚球、跳舞、觅食、偷窃和繁殖行为。该算法同时考虑了全局探索和局部开发,从而具有收敛速度快和准确率高的特点,可以有效地解决复杂的寻优问题。本文将对该算法进行原理讲解及程序实现。
2025-05-14 11:54:58 3.56MB
1
最大最小爬山算法 max-min 爬山贝叶斯网络结构学习算法,Ioannis Tsamardinos·Laura E. Brown·Constantin F. Aliferis,Mach Learn DOI 10.1007/s10994-006-6889-7 *该算法从观测数据重建贝叶斯网络。 因此,它首先使用最大最小父子节点 (MMPC) 算法构建 DAG(有向无环图)的骨架。 之后,它使用贝叶斯狄利克雷似然等价统一分数引导顶点之间的边。 有关更多信息,请阅读所附报告或*最大-最小爬山贝叶斯网络结构学习算法,作者:Ioannis Tsamardinos、Laura E. Brown 和 Constantin F. Aliferis。 安装 在您可以使用此包之前,请确保您已安装最新的 R版本 ( >=3.1 )、 RCPP版本 (>=0.11.1) 和igraph包。 下载 R 源文
2025-05-13 15:22:54 23.8MB
1
在电力系统领域中,配电网作为连接发电站与用户的重要环节,其安全稳定运行对整个电力系统的效率和可靠性具有决定性意义。随着分布式发电技术和储能系统的普及,如何有效地在配电网中选址和定容储能系统,已成为电力系统规划和运行的重要课题。在此背景下,基于改进多目标粒子群算法的配电网储能选址定容matlab程序应运而生,旨在通过优化算法对储能系统的位置和容量进行合理规划,以达到提高配电网性能的目标。 改进多目标粒子群算法(IMOPSO),作为一种启发式算法,通过模拟鸟群觅食行为来解决优化问题,具备快速收敛和全局搜索的能力。在传统多目标粒子群算法的基础上,通过引入新的改进策略,比如自适应调整惯性权重、动态邻居拓扑结构或精英保留机制,IMOPSO算法在求解多目标优化问题上表现更加优异。它能够在保证搜索空间多样性的前提下,有效提升求解质量与效率。 配电网储能选址定容问题,实质上是一个复杂的组合优化问题,涉及到储能系统的位置选择以及其容量配置两大要素。在选址问题中,需要考虑的因素包括但不限于储能系统的接入位置、附近负荷需求、储能系统与电网的相互作用等;而在定容问题中,则要考虑储能系统的经济性、安全性、寿命等多方面因素。因此,这个问题通常具有多个目标和约束,传统的优化方法往往难以应对,而IMOPSO算法恰好能弥补这一空缺。 利用matlab程序实现基于IMOPSO算法的配电网储能选址定容,可以充分发挥matlab在算法仿真和工程计算中的优势。Matlab不仅提供了一套完整的数值计算、符号计算和图形显示功能,而且其丰富的工具箱,如优化工具箱、神经网络工具箱等,为复杂算法的实现和调试提供了便利。此外,Matlab的编程语言简洁、直观,使得算法代码易于理解和修改,极大地降低了科研和工程人员的开发难度。 对于“多目标粒子群选址定容-main为主函数-含储能出力”的程序文件而言,其中的“main”主函数是整个程序的核心,它负责调用其他子函数和模块,协调整个算法的运行。文件中还包含储能出力模块,即考虑了储能系统在运行中对电网负荷变化的响应能力,以及如何根据电网的实时需求来调整储能系统的输出,这对于确保配电网的稳定性和经济性至关重要。 在此基础上,基于改进多目标粒子群算法的配电网储能选址定容matlab程序,能够帮助研究人员和工程师在模拟环境中对不同的选址和定容方案进行优化分析。通过比较不同方案对配电网性能的影响,如损耗减少、电压稳定性提升、运行成本降低等,从而选择最优的储能系统配置方案。 在实际应用中,本程序可作为配电网规划和运行决策支持系统的一部分,为电网运营者提供决策支持,帮助他们优化配电网的配置,提升电网的智能化水平。通过合理配置储能系统,不仅可以提高电网的供电质量和可靠性,还能够有效利用可再生能源,推动绿色电网的发展。 此外,配电网储能选址定容问题的研究,还涉及到电力系统规划、电力市场、电力电子技术以及人工智能等多学科的知识交叉。因此,该程序的开发和应用,也将推动相关学科的融合与发展,促进跨学科人才的培养。 基于改进多目标粒子群算法的配电网储能选址定容matlab程序,不仅为配电网的规划设计提供了强大的技术支持,也为电网运营者在面对日益复杂的电网结构和不断变化的负荷需求时,提供了高效的决策工具。随着电力系统的发展和智能电网的建设,该程序的理论价值和实践意义将进一步显现。
2025-05-12 22:47:12 4.31MB
1
Matlab研究室上传的视频均有对应的完整代码,皆可运行,亲测可用,适合小白; 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主或扫描视频QQ名片; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作
2025-05-12 19:40:40 2.96MB matlab
1
线控转向系统路感模拟与力矩控制:基于参数拟合的仿真算法及PID优化控制策略的探索图,线控转向系统路感模拟及力矩控制:Simulink仿真模型中的参数拟合与PID控制策略应用,线控转向系统路感模拟及路感力矩控制 通过参数拟合设计线控转向路感模拟算法,在simulink中建立仿真模型。 模型建立后,验证双纽线工况和中心区工况的路感力矩。 通过PID,模糊PID对路感力矩进行控制。 所有效果如图 ,线控转向系统;路感模拟;路感力矩控制;参数拟合设计;Simulink仿真模型;双纽线工况;中心区工况;PID控制;模糊PID控制。,线控转向系统:路感模拟与力矩控制的仿真研究
2025-05-12 18:10:25 1011KB sass
1