IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 21, NO. 4, FOURTH QUARTER 2019 Nguyen Cong Luong , Dinh Thai Hoang , Member, IEEE, Shimin Gong , Member, IEEE, Dusit Niyato , Fellow, IEEE,PingWang , Senior Member, IEEE, Ying-Chang Liang , Fellow, IEEE, and Dong In Kim , Fellow, IEEE
2022-05-09 17:14:09 5.17MB 强化学习 综述 通信和网络
1
使用深度学习的多手写数字识别(TensorFlow-Keras) 要求 TensorFlow(Keras) 的Python 3.5 + Numpy(+ MKL适用于Windows) PIL(枕头) Opencv的 tkinter(python GUI) 关于项目 使用CNN(卷积神经网络)在MNIST数据集上训练模型 将模型另存为'mnist.h5'(train_digit_recognizer.py) 使用tkinter GUI制作画布并在其上写数字 使用PIL在画布上获取“手写数字”的副本,并以“ img_ {image_number} .png”的形式保存到“ / img”中 同样在OpenCV帮助下,通过识别轮廓,它可以处理多个数字 使用保存的模型'mnist.h5'从画布预测保存的手写数字图像 屏幕截图 绘图画布... 输出图像... 使用PIL-ImageGrab
2022-05-09 16:09:51 1.06MB opencv machine-learning keras pillow
1
很棒的蒙特卡洛树搜索论文。 ⠀ ⠀⠀ 蒙特卡罗树搜索论文的精选列表,其中包含来自以下会议/期刊的实现: 机器学习 计算机视觉 自然语言处理 数据 人工智能 UAI 机器人RAS 游戏CIG 关于图分类、梯度提升、分类/回归树、欺诈检测和社区检测论文的类似集合以及实现。 2021年 学习停止:动态模拟蒙特卡罗树搜索(AAAI 2021) Li-Cheng Lan, Ti-Rong Wu, I-Chen Wu, Cho-Jui Hsieh [纸] Dec-SGTS:多代理协调的分散子目标树搜索(AAAI 2021) 李明龙、蔡忠轩、杨文静、吴丽霞、徐颖慧、王季 [纸] 改进的 POMDP 树搜索规划与优先行动分支 (AAAI 2021) 约翰·默恩、阿尼尔·耶尔迪兹、劳伦斯·布什、Tapan Mukerji、Mykel J. Kochenderfer [纸]
1
该讲座主要面向机器学习、计算机科学或相关学位的硕士学生,但也可能吸引其他学科的学生,如数学、物理、语言学、经济学等。如果有疑问,请参加第一堂课并与我们交谈。 该报告的重点是机器学习的算法和理论两个方面。我们将介绍许多标准算法,并了解构建良好机器学习算法的一般原理和理论结果。主题范围从已经确立的结果到最近的结果。 贝叶斯决策理论,没有免费的午餐定理。 监督学习问题(回归,分类): 简单基线(最近邻,随机森林);线性方法;正则化; 支持向量机,非线性核方法及其背后的理论 无监督学习问题:PCA降维到流形方法从k-means到谱聚类和谱图理论,从MDS到t-SNE的嵌入算法 统计学习理论:一致性和泛化界限 社会背景下的机器学习:公平、可解释性等 低秩矩阵完成,压缩感知 排序
2022-05-09 09:08:22 51.61MB 机器学习 文档资料 人工智能
可选教材-Linear Algebra and Learning from Data
2022-05-08 22:12:12 801KB 人工智能 EXINAI教材
1
使用CNN进行面部表情识别:使用CNN和Keras和Tensorflow创建的面部表情识别模型
2022-05-08 18:19:59 1.6MB python deep-learning tensorflow numpy
1
聊天学习者 在TensorFlow中基于新的序列到序列(NMT)模型实现的聊天机器人,具有无缝集成的某些规则。 对于那些对中文聊天机器人感兴趣的人,请。 ChatLearner(Papaya)的核心是基于NMT模型( )构建的,此处已对其进行了调整以适应聊天机器人的需求。 由于TensorFlow 1.4中tf.data API的更改以及自TensorFlow 1.12以来的许多其他更改,此ChatLearner版本仅支持TF版本1.4至1.11。 如果您需要支持TensorFlow 1.12,可以在tokenizeddata.py文件中进行轻松更新。 在开始其他一切之前,您可能需要
2022-05-08 18:05:57 23.08MB python deep-learning tensorflow chatbot
1
| | 什么是新的? ThunderGBM获得了IEEE计算机协会出版委员会颁发的IEEE并行和分布式系统事务奖(2019年最佳论文奖)(在987篇论文中,有1篇是因为“ Zeyi Wen ^,Jiahuaai Shi *,Bingsheng He,Jian Chen,Kotagiri Ramamohanarao和李勤彬*,“为高效梯度提升决策树训练开发GPU”,IEEE并行和分布式系统交易,第30卷,第12期,2019年,第2706-2717页。”)。 查看更多详细信息: , 总览 ThunderGBM的任务是帮助用户轻松有效地应用GBDT和随机森林来解决问题。 ThunderGBM利用G
2022-05-08 14:50:49 11.94MB machine-learning random-forest gpu cuda
1
猫和狗 当我们的数据集不足时,最常用的方法之一是使用预先训练的模型。 在我们的案例中,我们将考虑在ImageNet数据集上训练的大型卷积网络(140万个带标签的图像和1000个不同的类)。 ImageNet包含许多动物类别,包括不同种类的猫和狗,因此我们可以期望在猫与狗的分类问题上表现出色。 我们可以使用的一些主干: •Xception•InceptionV3•ResNet50•VGG16•VGG19•MobileNet 我将使用由Karen Simonyan和Andrew Zisserman在2014年开发的VGG16架构,该架构是ImageNet的一种简单且广泛使用的convnet架构。 VGG16: from keras.applications import VGG16 conv_base=VGG16(weights=('imagenet'),
1
冒泡排序法的matlab程序代码这个存储库包含我在学习 C++ 时编写的代码 学习C++的理由 在我的职业生涯中,迄今为止只使用了相对高级的编程语言(Python、MATLAB),我想更多地了解这些程序如何与底层计算机交互的底层机制。 我认为 C++ 将是一门很好的学习语言,因为它教会了我很多关于“幕后”发生的事情、内存分配和管理的工作原理、算法的设计方式以及我一直在使用的数据结构和函数直到此时才真正在做。 也希望学习这些东西能帮助我写出更快、更高效的代码,对我以后学习其他编程语言有帮助。 子文件夹 此存储库中的子文件夹包含我学习 C++ 的不同方式。 教程 为了介绍 C++ 的工作原理,我一直在关注优秀且深入的在线教程,网址为 数据结构 为了练习用 C++ 编写,我正在学习如何实现一些最常见的数据结构(链表、堆、堆栈……) 排序算法 为了更多的实践,我也在学习如何在 C++ 中实现各种常见的排序算法(选择、插入、冒泡、快速……) 有用的资源 - 常见数据结构、排序算法及其复杂性的列表 - 对 C++ 的深入介绍
2022-05-07 22:44:00 79KB 系统开源
1