本数据集为机器视觉道路障碍检测voc格式数据集,主要包含车载视角下道路中的障碍,如汽车行人摩托车,除此之外还有一部分道路中的路障、施工围挡、升降栅栏的数据集,实际训练的话可以再去数据集网站下载补充常见的汽车行人数据集。
2025-03-24 20:18:46 318.25MB 数据集 机器学习 目标检测
1
机器学习实战教程,小项目
2025-03-22 17:06:42 66.09MB 机器学习 python
1
多算法模型(BI_LSTM GRU Mamba ekan xgboost)实现功率预测。包括数据处理、特征工程、模型训练、模型推理和结果输出,最终结果以 JSON 格式返回。可灵活替换模块和数据集。实现轻松上手,快速训练快速推理。项目代码如下 data/ │ ├── data_process1.py # 数据预处理代码 ├── data_process.csv # 预处理数据文件 └── 91-Site_1A-Trina_10W.csv # 原始数据文件 inference/ │ ├── myprocessor.py # 推理主代码入口 ├── logs/ # 日志文件路径 │ └── logging.log # 推理日志文件 ├── config/ # 配置文件路径 │ └── config.yaml # 推理配置文件 ├── output/ # 推理输出路径 │ └── ...
2025-03-05 14:03:34 41.05MB 功率预测 机器学习 人工智能
1
python-双重机器学习(Double Machine Learning, DML)是一种结合了机器学习和因果推断的统计方法,它在经济管理领域有着广泛的应用。这种方法特别适用于处理高维数据和复杂的非线性关系,同时能够提供无偏的参数估计。在经济管理领域,DML 可以用于估计政策效果、市场反应、消费者行为等。例如,研究者可以使用 DML 来评估某一政策变化对经济指标的影响,或者分析市场干预措施对消费者购买行为的改变。DML 通过正交化技术解决了传统机器学习在因果推断中的偏差问题,使得研究者能够在控制混淆变量的同时,准确地估计出核心参数。 本数据以一个双重机器学习的案例展开,展示了双重机器学习的使用方法。
2025-02-27 23:01:51 357KB python 机器学习
1
内容概要:本文详细介绍了清华大学双聘教授张家铖关于DeepSeek及其AI幻觉的研究成果,涵盖了AI幻觉的概念与成因,如何评估和缓解幻觉的风险,以及幻觉的潜在创造性应用。具体而言,文中首先解释了什么是AI幻觉,探讨了它为何发生,特别是模型训练中的数据偏差、泛化困难等问题。其次,对DeepSeek和类似模型在多种情境下进行幻觉评测,并给出了详细的幻觉率统计数据。接着讨论了幻觉在金融、医疗等领域造成的问题,并提出了减轻这些负面影响的方法,比如联网搜索、双AI验证、提示词工程等。最后强调了幻觉在艺术创造和技术突破方面的积极意义。 适合人群:对于希望深入了解人工智能技术尤其是大型语言模型行为特征的专业人士来说是非常有价值的参考资料;对于关注AI发展和社会影响的一般公众也能提供重要见解。 使用场景及目标:该研究不仅揭示了现有AI系统的潜在风险,还鼓励开发者采用更好的方法来评估和改进他们的系统;同时也展示了幻觉在创造性领域的潜力,如艺术创作和技术革新等方面的应用前景。 其他说明:文档中提供了若干具体的应用案例,比如金融机构利用DeepSeek提升服务质量的例子,还有关于如何有效防范AI产生幻觉的实践经验分享。此外,还提及了一些新兴的应用趋势,例如通过幻觉促进科学研究的新模式。
2025-02-23 15:28:48 3.57MB 人工智能 自然语言处理 机器学习
1
内容概要:本文详细介绍了一款名为DeepSeek的人工智能工具及其广泛应用场景,旨在帮助普通大众在日常工作、学习和生活中更好地利用AI来提高效率和解决问题。DeepSeek是一款由中国科技公司推出的通用人工智能平台,尤其擅长推理分析、多语言理解和多模态处理等高级功能。它不仅能帮助企业快速生成所需文档,还能为用户提供从学习辅导、职业规划到人际关系等方方面面的支持,通过强大的语义理解和对话系统让用户轻松应对各种挑战。文中列举了多个实际应用场景,展示了DeepSeek是如何帮助人们解决具体困难,比如快速编写长篇文章、处理职场沟通障碍或是应急处置突发的家庭危机。 适合人群:广大上班族、学生群体及其他希望通过先进技术改善自身生活质量的所有人士,尤其是那些处于快节奏生活方式之下,渴望获得更多时间管理灵活性和个人成长机会的朋友。 使用场景及目标:①帮助用户在极短的时间内起草或优化重要文档;②助力新入职员工快速掌握所在行业和技术领域的关键信息,加速岗位融入;③协助客服团队迅速回应客户咨询,提高服务质量;④指导用户解决学业上遇到的知识盲点或程序编写障碍;⑤支援个人解决生活中遇到的实际困境,包括但不限于社交互动难题以及应急事件的处置。 其他说明:文章中强调了提示词策略的重要性,对于充分发挥DeepSeek的作用至关重要。有效的提示可以激发模型深层次的推理能力,从而生成更为精准的答案。此外,面对来自AI的结果,还需要使用者拥有良好的评判能力和逻辑思维能力,这样才能选出最适合实际情况的最佳方案,真正做到让技术服务于人。同时,随着DeepSeek不断更新迭代,更多实用功能将会解锁,持续为人们的日常带来惊喜变革。
2025-02-21 21:00:10 4.84MB 人工智能 自然语言处理 机器学习
1
1. Matlab实现粒子群优化算法优化支持向量机的数据回归预测(完整源码和数据) 2. 多变量输入,单变量输出,数据回归预测 3. 评价指标包括:R2、MAE、MSE、RMSE 4. 包括拟合效果图和散点图 5. Excel数据,暂无版本限制,推荐2018B及以上版本 注:采用 Libsvm 工具箱(无需安装,可直接运行),仅支持 Windows 64位系统
1
国科大模式识别与机器学习2015-2019试卷答案;国科大模式识别与机器学习2015-2019试卷答案;国科大模式识别与机器学习2015-2019试卷答案
2025-01-09 21:41:50 5.01MB 国科大模式识别与机器学习2015
1
机器学习赵卫东第二版课后题答案
2025-01-01 20:58:15 22.57MB 机器学习
1
机器学习是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。它专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。机器学习是人工智能的核心,是使计算机具有智能的根本途径。 随着统计学的发展,统计学习在机器学习中占据了重要地位,支持向量机(SVM)、决策树和随机森林等算法的提出和发展,使得机器学习能够更好地处理分类、回归和聚类等任务。进入21世纪,深度学习成为机器学习领域的重要突破,采用多层神经网络模型,通过大量数据和强大的计算能力来训练模型,在计算机视觉、自然语言处理和语音识别等领域取得了显著的成果。 机器学习算法在各个领域都有广泛的应用,包括医疗保健、金融、零售和电子商务、智能交通、生产制造等。例如,在医疗领域,机器学习技术可以帮助医生识别医疗影像,辅助诊断疾病,预测病情发展趋势,并为患者提供个性化的治疗方案。在金融领域,机器学习模型可以分析金融数据,识别潜在风险,预测股票市场的走势等。 未来,随着传感器技术和计算能力的提升,机器学习将在自动驾驶、智能家居等领域发挥更大的作用。同时,随着物联网技术的普及,机器学习将助力智能家居设备实现更加智能化和个性化的功能。在工业制造领域,机器学习也将实现广泛应用,如智能制造、工艺优化和质量控制等。 总之,机器学习是一门具有广阔应用前景和深远影响的学科,它将持续推动人工智能技术的发展,为人类社会的进步做出重要贡献。
2024-12-23 15:19:52 2.1MB 机器学习
1